Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Множественная и частная корреляция↑ ⇐ ПредыдущаяСтр 5 из 5 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции и его квадрата – коэффициента детерминации. Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком, или, иначе, оценивает тесноту совместного влияния факторов на результат. Независимо от формы связи показатель множественной корреляции может быть найден как индекс множественной корреляции: , где - общая дисперсия результативного признака; - остаточная дисперсия для уравнения у = f(x1,x2, …,xp). Методика построения индекса множественной корреляции аналогична построению индекса корреляции для парной зависимости. Границы его изменения те же: от 0 до 1, чем ближе его значение к 1, тем теснее связь результативного признака со всем набором исследуемых факторов. Величина индекса множественной корреляции должна быть больше или равна максимальному парному индексу корреляции: . При правильном включении факторов в регрессионный анализ величина индекса множественной корреляции будет существенно отличаться от индекса корреляции парной зависимости. Если же дополнительно включенные в уравнение множественной регрессии факторы третьестепенны, то индекс множественной корреляции может практически совпадать с индексом парной корреляции. Отсюда ясно, что, сравнивая индексы множественной и парной корреляции, можно сделать вывод о целесообразности включения в уравнение регрессии того или иного фактора. Можно воспользоваться следующей формулой индекса множественной корреляции: При линейной зависимости признаков формула индекса корреляции может быть представлена следующим выражением: , где - стандартизованные коэффициенты регрессии - парные коэффициенты корреляции результата с каждым фактором. Величина множественного коэффициента корреляции зависит не только от корреляции резальтата с каждым из факторов, но и от межфакторной корреляции: Рассмотренная формула позволяет определить совокупный коэффициент корреляции, не обращаясь при этом к уравнению множественной регрессии, а используя лишь парные коэффициенты корреляции.
Скорректированный индекс множественной корреляции содержит поправку на число степеней свободы, а именно остаточная сумма квадратов делится на число степеней свободы остаточной вариации (n-m-1), а общая сумма квадратов отклонения - на число степеней свободы в целом по совокупности (n-1). Поскольку =1-R2, то
Ранжирование факторов, участвующих в множественной линейной регрессии, может быть проведено с помощью частных коэффициентов корреляции. При нелинейной взаимосвязи исследуемых признаков эту функцию выполняют частные индексы детерминации. Кроме того, частные показатели корреляции широко используются при решении проблемы отбора факторов: целесообразность включения того или иного фактора в модель доказывается величиной показателя частной корреляции. Частные коэффициенты (или индексы) корреляции характеризуют тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включенных в уравнение регрессии. Показатели частной корреляции представляют собой отношение сокращения остаточной дисперсии за счет дополнительного включения в анализ нового фактора к остаточной дисперсии, имевшей место до введения его в модель. В общем виде при наличии р факторов для уравнения y=a+b1x1+b2x2+ … +bpxp+ε коэффициент частной корреляции, измеряющий влияние на у фактора хiпри неизменном уровне других факторов, можно определить по формуле , - множественный коэффициент детерминации всего комплекса р факторов с результатом; - тот же показатель детерминации, но без введения в модель фактора хр. При i=1 формула коэффициента частной корреляции примет вид: . Данный коэффициент частной корреляции позволяет измерить тесноту связи между у и хi при неизменном уровне всех других факторов, включенных в уравнение регрессии. Коэффициенты частной корреляции более высоких порядков можно определить через коэффициенты частной корреляции более низких порядков по формуле Например, для двух факторов формула примет вид: (для i = 1), (для i = 2).
|
||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 901; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.118.194 (0.009 с.) |