Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Корреляция и взаимосвязь величин.↑ ⇐ ПредыдущаяСтр 6 из 6 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Значительная корреляция между двумя случайными величинами всегда является свидетельством существования некоторой статистической связи в данной выборке, но эта связь не обязательно должна наблюдаться для другой выборки и иметь причинно-следственный характер. Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи. Коэффициент корреляции - это статистический показатель зависимости двух случайных величин. Коэффициент корреляции может принимать значения от -1 до +1. При этом, значение -1 будет говорить об отсутствии корреляции между величинами, 0 - о нулевой корреляции, а +1 - о полной корреляции величин. Т.е., че ближе значение коэффициента корреляции к +1, тем сильнее связь мезду двумя случайными величинами. Линейный коэффициент корреляции. Для устранения недостатка ковариации был введён линейный коэффициент корреляции (или коэффициент корреляции Пирсона). Коэффициент корреляции рассчитывается по формуле: где , — среднее значение выборок. Коэффициент корреляции изменяется в пределах от минус единицы до плюс единицы. Коэффициент корреляции рангов (Кендалла). Применяется для выявления взаимосвязи между количественными или качественными показателями, если их можно ранжировать. Значения показателя X выставляют в порядке возрастания и присваивают им ранги. Ранжируют значения показателя Y и рассчитывают коэффициент корреляции Кендалла: ,где . — суммарное число наблюдений, следующих за текущими наблюдениями с большим значением рангов Y. — суммарное число наблюдений, следующих за текущими наблюдениями с меньшим значением рангов Y. (равные ранги не учитываются!) Если исследуемые данные повторяются (имеют одинаковые ранги), то в расчетах используется скорректированный коэффициент корреляции Кендалла:
— число связанных рангов в ряду X и Y соответственно. Коэффициент корреляции рангов (Спирмена) Степень зависимости двух случайных величин (признаков) X и Y может характеризоваться на основе анализа получаемых результатов . Каждому показателю X и Y присваивается ранг. Ранги значений X расположены в естественном порядке i=1, 2,..., n. Ранг Y записывается как Ri и соответствует рангу той пары (X, Y), для которой ранг X равен i. На основе полученных рангов Х i и Yi рассчитываются их разности и вычисляется коэффициент корреляции Спирмена: Значение коэффициента меняется от −1 (последовательности рангов полностью противоположны) до +1 (последовательности рангов полностью совпадают). Нулевое значение показывает, что признаки независимы. Коэффициент множественной ранговой корреляции (конкордации). , — число групп, которые ранжируются. — число переменных. — ранг -фактора у -единицы. Значимость: , , , то гипотеза об отсутствии связи отвергается. В случае наличия связанных рангов: . Множественная корреляция. Множественная корреляция Измерении связи между результативным признаком, двумя и более факторными. Этим занимается множественная корреляция. Множественная корреляция решает три задачи. Она определяет: - форму связи; - тесноту связи; - влияние отдельных факторов на общий результат. Определение формы связи. Определение формы связи сводится обычно к отысканию уравнения связно с факторами x,z,w,...v. Так, линейное уравнение зависимости результативного признака от двух факторных определяется по формуле =a0+a1x+a2z Для определения параметров а0, a1и а2, по способу наименьших квадратов необходимо решить следующую систему трех нормальных уравнений: Измерение тесноты связи. При определении тесноты связи для множественной зависимости пользуются коэффициентом множественной (совокупной) корреляции, предварительно исчислив коэффициенты парной корреляции. Так, при изучении связи между результативным признаком y и двумя факторными признаками - х и z, нужно предварительно определить тесноту связи между у и х, между у и z, т.е. вычислить коэффициенты парной корреляции, а затем для определения тесноты связи результативного признака от двух факторных исчислить коэффициент множественной корреляции по следующей формуле: где rxy, rzy, rzx - парные коэффициенты корреляции. Коэффициент множественной корреляции колеблется в пределах от 0 до 1. Чем он ближе к 1, тем в большей мере учтены факторы, определяющие конечный результат. Если коэффициент множественной корреляции возвести в квадрат, то получим совокупный коэффициент детерминации, который характеризует долю вариации результативного признака у под воздействием всех изучаемых факторных признаков. Совокупный коэффициент детерминации, как и при парной корреляции, можно исчислить по следующей формуле: R2=у2y/у2y где у2Y - дисперсия факторных признаков, у2y - дисперсия результативного признака. Однако вычисление теоретических значений Y при множественной корреляции и сложно, и громоздко. Поэтому факторную дисперсию у2Yисчисляют по следующей формуле: Проверка существенности связи при множественной корреляции по сути ничем не отличается от проверки при парной корреляции. Поскольку факторные признаки действуют не изолированно, а во взаимосвязи, то может возникнуть задача определения тесноты связи между результативным признаком и одним из факторных при постоянных значениях прочих факторов. Она решается при помощи частных коэффициентов корреляции. Например, при линейной связи частный коэффициент корреляции между х и у при постоянном z рассчитывается по следующей формуле: В настоящее время на практике широкое распространение получил многофакторный корреляционный анализ.
|
||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 846; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.55.193 (0.008 с.) |