Базис пространства, его размерность. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Базис пространства, его размерность.



Построение базиса пространства, подпространства несколько упрощается, если мы располагаем некоторыми представлениями о размерности пространства, подпространства. Одним из наводящих соображений здесь может быть следующее. Подмножество векторов пространства выделяется из с помощью дополнительных условий, накладываемых на векторы. При этом, чем больше таких условий, тем меньшей, вообще говоря, будет размерность подпространства . Если , а выделено с помощью условий специального вида, то есть основания ожидать, что .

Задача 1.1. (№1297[4]) Доказать, что множество п -мерных векторов, у которых первая и последняя координаты равны между собой, образует линейное подпространство пространства .

Решение. Множество образует линейное подпространство пространства , так как удовлетворяет критерию подпространства. Действительно, выделяется из с помощью одного условия , поэтому

1.

,

2.

.

Кроме того, нетрудно показать, что . Для этого рассмотрим векторы стандартного базиса . Векторы не принадлежат . Но построение базиса подпространства в ряде случаев удобно выполнить, исходя из стандартного базиса самого пространства, изменяя его векторы так, чтобы они «попали» в подпространство. Поэтому преобразуем векторы так, чтобы у них первая и последняя координаты были равны. Например, пусть . Рассмотрим систему векторов . Она образует базис , так как нетрудно проверить, что она является линейно независимой и каждый вектор из подпространства линейно выражается через вектора этой системы. А так как количество векторов системы равно , то и . Итак, наше предположение оказалось верным.

Линейные подпространства, размерности которых на 1 меньше размерности самого пространства называются гиперплоскостями.

 

В следующей задаче условий больше.

Задача 1.2. (№1298[4]) Доказать, что множество п -мерных векторов, у которых координаты с четными номерами равны нулю, образует линейное подпространство пространства .

Решение. Для доказательства того, что является подпространством, нужно также воспользоваться критерием подпространства. Так как поэтому следует ожидать, что , где - наибольшее четное число, не превышающее (, если - четное, и , если - нечетное). Базисом является подсистема стандартного базиса пространства , содержащая векторы только с нечетными номерами.

 

Задача 1.3. Проверить, является ли множество многочленов степени 3 с вещественными коэффициентами подпространством пространства многочленов степени ().

Решение. Воспользуемся критерием подпространства. Проверим условие .

Пусть , тогда

,

так как степень суммы этих двух многочленов равна двум. Итак, множество не является подпространством.

 

Задача 1.4. (№№1291, 1308[4]) Найти какой-нибудь базис и размерность линейного подпространства пространства , если составляют все векторы из , у которых сумма координат .

Решение. Очевидно векторы стандартного базиса

(1 на - ой позиции) множеству не принадлежат ни при каком . Однако, замена на векторах последнего нуля числом (-1) дает нам векторы из . Таким образом мы получаем систему векторов

из , которая линейно независима (почему?) и обязана быть базисом , ибо из условия задачи явно следует, что из и, следовательно, .

Попутно решен вопрос (и подтвердилась гипотеза) о размерности ( выделено из одним условием).

 

Задача 1.4. (№1306[4]) Пусть - неотрицательная квадратичная форма от неизвестных ранга . Доказать, что все решения уравнения =0 образуют мерное линейное подпространство пространства .

Поиск решения. Вспоминаем основные понятия теории квадратичных форм (матрица формы, ранг формы, определение формы). Очевидно, что более подробные записи данного уравнения в виде

, никак не указывают на способ решения задачи.

В процессе дальнейших размышлений начинаем понимать, что мы должны исходить из неотрицательной определенности формы . Нормальный вид такой формы

(1)

а множество решений уравнения =0 в этом случае состоит из векторов вида

, (2)

Где - произвольные числа из . Имеющийся опыт (задача 1.2) подсказывает, что множество векторов такого вида есть ()-мерное подпространство пространства . Но данная нам форма не обязательно нормальная. И здесь мы вспоминаем, что каждая неотрицательно определенная форма ранга невырожденным линейным преобразованием приводится к виду (1). Создается план решения: преобразовать форму к виду (1), найти решения (2) уравнения =0 для преобразованной формы, а затем с помощью обратного преобразования построить решения уравнения =0 для данной формы .

Решение. По теореме о приведении квадратичной формы к нормальному виду существует невырожденное линейное преобразование

, приводящее форму к виду

 

Множество решений уравнения состоит из векторов где , то есть из векторов

.

Обозначим (1 на - ой позиции) и докажем, что множество решений уравнения =0 есть линейная оболочка системы векторов

.

Пусть . Тогда

Очевидно и другое:

Кроме того, система линейно независима (проверяется непосредственно). Составляем линейную комбинацию . Получаем . Мы пришли к матричному уравнению, которое имеет единственное решение, так как матрица является невырожденной.

.

Отсюда . Тем самым мы показали, что система является линейно независимой. Следовательно, - линейное пространство (по построению) и его размерность

 



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 485; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.44.108 (0.014 с.)