Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

К-т ф-м н., доц. Савастру О.В.

Поиск

 

 

Рецензенты: д-р ф-м н., проф. Евтухов В.М.,

К-т ф-м н., доц. Белозеров Г.С.

 

 

Рекомендовано к печати

Ученым советом ИМЭМ Одесского национального университета им. И. И. Мечникова

протокол № 1 от 5 февраля 2008 г.

.

 


СОДЕРЖАНИЕ

Обозначения…………………………………………………4

1. Линейные пространства …………………………………...5

1.1. Линейные пространства и подпространства………….5

1.2. Базис пространства, его размерность…………………6

1.3. Координаты вектора в данном базисе…………….…11

1.4. Сумма и пересечение подпространств………………12

2. Евклидовы и унитарные пространства ………….…........17

2.1. Процесс ортогонализации Шмидта………………….17

2.2.Ортогональные дополнения…………………………..19

2.3. Ортогональная проекция и перпендикуляр на подпространство……………………………………………………..20

3. Операторы в линейных пространствах…………….........23

3.1. Образ, ядро линейного оператора……………………28

3.2. Матрица линейного оператора в данных базисах…..29

3.3. Собственные векторы и собственные значения..…...31

3.4. Канонический корневой базис и жорданова нормальная форма…………………………………………………….34

4. Операторы в евклидовых и унитарных пространствах..40

5. Приведение двух квадратичных форм к каноническому виду…………………………………………………………...45

Список литературы………………………………………….51

 

 


Линейные пространства и линейные операторы представляют собой начало абстрактной части математики, с которой студенту в дальнейшем неоднократно придется иметь дело.

Эти методические указания по самостоятельной работе студентов предполагают использование следующего задачника:

И.В.Проскуряков. Сборник задач по линейной алгебре. М., Наука, 1974.

ОБОЗНАЧЕНИЯ

В дальнейшем мы будем придерживаться следующих обозначений (если в тексте нет специальной оговорки):

¾ - произвольные пространства над некоторым полем ;

¾ - пространство - мерных строк (столбцов) с элементами из поля над полем (арифметическое пространство).

В частности

¾ - действительное - мерное арифметическое пространство;

¾ - комплексное - мерное арифметическое пространство;

¾ - пространства геометрических векторов (прямой, плоскости, пространства);

¾ - евклидовы пространства (с указанием размерности или без него);

¾ - подпространства данного пространства ( - индекс, не связанный с размерностью);

¾ векторы рассматриваемого пространства; - нулевой вектор;

¾ скаляры из данного поля, - нуль этого поля;

¾ линейные операторы, в отдельных случаях – матрицы;

¾ матрицы линейных операторов в базисах соответственно ;

¾ размерности пространств ;

¾ ранги операторов (матриц) ;

¾ скалярное произведение в данном пространстве;

¾ векторное произведение в данном пространстве .

 

 

  1. ЛИНЕЙНЫЕ ПРОСТРАНСТВА.

Основными типами задач этого параграфа являются следующие:

А) выяснение вопроса, будет ли данное множество с указанными операциями линейным пространством, подпространством;

В) выделение базиса пространства, определение его размерности;

С) вычисление координат вектора в данном базисе;

D) нахождение суммы, пересечения подпространств, их размерностей и базисов.

 

Линейные пространства и подпространства.

Для решения задач первой группы необходимо знание аксиом линейного пространства (вообще, не следует приниматься за решение задач любого раздела, не ознакомившись предварительно с основными понятиями и теоремами данного раздела). Заметим, что в группе аксиом линейного пространства содержатся требования неограниченной применимости, однозначности и замкнутости линейных операций, которые не выделены под отдельными номерами. Распространенная ошибка: забывают проверить выполнение этих условий.

В тех условиях, когда данное множество состоит из векторов некоторого известного пространства, полезной является следующая теорема (критерий подпространства):

Теорема. Подмножество векторов пространства над полем является подпространством тогда и только тогда, когда

1. замкнуто относительно сложения, т.е. ,

2. замкнуто относительно умножения векторов на любые скаляры из основного поля : .

Некоторые из задач требуют хорошего знания других разделов курса (элементарной теории матриц, квадратичных форм, систем линейных уравнений). Ниже мы подробнее остановимся на одной из этих задач.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 197; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.97.235 (0.009 с.)