Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Взаимодействие радиоактивного излучения с веществомСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Человек с помощью своих органов чувств не способен обнаружить радиоактивное излучение. Поэтому важной задачей является изучение особенностей взаимодействия различных радиоактивных излучений с веществом, выяснение их влияния на человеческий организм и разработка приборов, способных регистрировать такие излучения. Быстрые заряженные частицы в веществе взаимодействуют с электронными оболочками и ядрами атомов. Электрон атома вещества в результате взаимодействия с быстрой заряженной частицей получает дополнительную энергию. В результате атом либо переходит в возбужденное состояние, либо ионизуется. При прохождении вблизи атомного ядра, быстрая заряженная частица движется с ускорением, вызванным кулоновским взаимодействием с ядром, в результате чего испускаются кванты рентгеновского тормозного излучения. Возможно и неупругое соударение заряженных частиц с атомными ядрами. Обладающие большой массой (по сравнению с β-частицами) α-частицы при столкновениях с электронами атомов вещества почти не испытывают отклонения и в веществе движутся почти прямолинейно. Их пробеги в веществе малы. Так, α-частицы с энергией 4 МэВ в воздухе могут пролететь около 2,5 см, а в воде - сотые доли миллиметра. Проникающая способность β-частиц больше. Так при энергии 2 МэВ от потока β-частиц защищает слой алюминия толщиной 3,5 мм. Плотная одежда может поглотить значительную часть β-частиц и совсем не пропустит α-частицы. Однако, при попадании радиоактивных веществ внутрь человеческого тела с пищей, водой, воздухом α и β излучения могут причинить человеку серьезный вред. Нейтроны не имеют электрического заряда и поэтому не взаимодействуют с электронными оболочками атомов. При столкновениях с ядрами они могут выбивать из них заряженные частицы, которые ионизируют и возбуждают атомы среды. При радиационном захвате тепловых нейтронов ядрами водорода человеческого организма они превращаются в ядра дейтерия с испусканием γ-квантов, с энергией 2,23 МэВ, которые дают существенный вклад в облучение организма. Установлено, что γ-кванты взаимодействуют, в основном, с электронными оболочками атомов, вызывая либо фотоэффект, либо, передавая часть своей энергии и импульса электронам, претерпевают так называемое комптоновское рассеяние. При энергии γ-квантов большей, чем удвоенная энергия покоя электрона может проходить рождение электрон-позитронных пар. Пути пробега нейтронов и γ-квантов в воздухе измеряются сотнями метров, в веществе - десятками сантиметров и даже метрами, в зависимости от плотности вещества и энергии γ-квантов и нейтронов. По этой причине потоки γ-квантов и нейтронов представляют для человека наибольшую опасность. Поглощенная доза ионизирующего излучения D является универсальной мерой воздействия любого вида излучения на вещество. Она равна отношению энергии W, переданной веществу, к массе вещества m, т.е.: В системе СИ единицей поглощенной дозы является грей (Гр): Мощностью дозы Р называется отношение дозы излучения ко времени облучения t, т.е.: Единицей мощности дозы в системе СИ является грей в секунду. Относительная биологическая эффективность К характеризует различие биологического действия различных видов излучений при одинаковой дозе. Для рентгеновского и γ-излучения относительная биологическая эффективность К=1, для тепловых нейтронов К=3, для нейтронов с энергией 0,5 МэВ К=10, для α-частиц К=20. Эквивалентная доза Н определяется как произведение поглощенной дозы D на относительную биологическую эффективность К: Единицей эквивалентной дозы в системе СИ является зиверт (Зв). 1 Зв равен эквивалентной дозе, при которой поглощенная доза равна 1 Гр и К=1. Экспозиционная доза DЭ характеризует ионизирующее действие излучения на воздух. Она определяется как отношение суммарного заряда Q всех ионов одного знака, созданных в воздухе вторичными частицами (электронами и позитронами) к массе воздуха m: Экспозиционная доза в системе СИ измеряется в Кл/кг. Распространенной внесистемной единицей экспозиционной дозы является рентген (Р). При экспозиционной дозе 1 Р в 1 см3 сухого воздуха образуется 2 ·109 пар ионов. Смертельная доза γ-излучения для человека равна 6 Гр. При массе человека m=70 кг из определения дозы (18.7) для выделившейся в организме человека энергии имеем: Это ничтожная энергия. Так, вода массой mВ=10 г, нагретая до температуры 46o С (на Δt=10o выше температуры тела) передает организму человека при ее потреблении точно такую же энергию. Действительно: здесь с=4,2·103 Дж/(кг·К) - удельная теплоемкость воды. Из этих оценок ясно, что не тепловое воздействие ионизирующего излучения является причиной гибели человека. Живой организм - очень сложная, высокоупорядоченная система. Ионизирующее облучение разрушает сложные молекулы живого организма, нарушая его нормальное функционирование. При эквивалентной дозе 0,5-1 Зв начинаются нарушения в кроветворной системе человека. При эквивалентных дозах облучения всего тела 3-5 Зв около половины облученных умирает в течение 1-2 месяцев. При дозах 10-50 Зв смерть наступает через 1-2 недели. Предельно допустимой дозой облучения для лиц, профессионально связанных с использованием источников радиации, является 50 мЗв за год. В качестве предельно допустимой дозы систематического облучения населения установлена эквивалентная доза 5 мЗв за год. За счет естественного радиационного фона доза облучения составляет около 2 мЗв за год.
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 1222; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.27.225 (0.007 с.) |