Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Характеристический прямоугольник. Фокусы эллипсаСодержание книги
Поиск на нашем сайте
Процедуру построения эллипса из окружности путем сжатия можно выполнить с помощью циркуля и линейки следующим образом. Проводим две концентрические окружности радиуса OA=a и OВ=b. Через центр О проводим произвольный луч ОР. Через точки К и N, в которых OР встречает две окружности, проводим прямые, параллельные осям Х и Y. Эти прямые пересекутся в точке M. Ее ордината MQ меньше ординаты NQ точки N, лежащей на окружности радиуса а, причем MQ:NQ=b:a. Значит, точка M лежит на искомом эллипсе. Меняя направление луча ОР, получим новые точки эллипса (рис. 4). На рисунке 5 показано, как построить овал, похожий на эллипс с полуосями а и b (когда а и b отличаются друг от друга не слишком сильно), из дуг окружностей двух радиусов. Для этого надо на отрезке АВ от точки В отложить отрезок длины a-b, поставить точку Е и провести перпендикуляр через середину отрезка АЕ до пересечения с прямой BD. Точку пересечения с прямой BD назовем О1, точку пересечения с прямой АС назовем О2. Из этих точек, как из центров, проведем две сопрягающиеся дуги, радиусами О1В и О2А, соответственно. Центры О3 и О4 симметричны центрам О1 и О2. Если на том же чертеже построить опорные точки для эллипса методом сжатия окружности, будет видно, насколько сильно различаются линии овала и эллипса. Из уравнения эллипса можно заключить, что оси координат являются осями симметрии эллипса. Центр симметрии О называется центром эллипса. Эллипс можно вписать в прямоугольник, который называется характеристическим (рис. 6). Длины сторон прямоугольника ищутся из простых соображений. Из уравнения эллипса следует, что . Аналогично, . Следовательно, длины сторон характеристического прямоугольника равны 2a и 2b, соответственно. Числа а и b - называются полуосями эллипса. Большая полуось называется главной. Из точки В1 проведем дугу окружности радиуса а, точки пересечения этой дуги с осью симметрии эллипса А1А2 назовем F1 и F2. Это фокусы эллипса. Расстояние между ними обозначим через 2c. Ось симметрии, на которой расположены фокусы, называется фокальной осью, а величина с (расстояние от центра эллипса до фокуса) – фокусное расстояние эллипса.Фокусное расстояние эллипса – очень важная характеристика. Эллипс можно задавать и с помощью величины его главной полуоси и фокусного расстояния. Величины a b и c, являясь катетами и гипотенузой прямоугольного треугольника, связаны друг с другом простыми соотношениями (рис. 6): Сумма расстояний от вершины В1 эллипса до фокусов равна 2 а. Для любой другой точки эллипса сумма расстояний r1+r2 от нее до фокусов тоже равна 2 а (рис. 6). Обычно эллипс так и определяют – как геометрическое место точек, сумма расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная (она равна 2 а и она больше расстояния между фокусами, равного 2с). Каноническое уравнение эллипса можно вывести и из соотношения MF1+MF2=r1+r2=2 a, используя, что F1F2=2 c. Надо переписать его в координатной форме и избавиться от корней - перенести один из корней в правую часть уравнения, возвести обе части в квадрат, и еще раз избавиться от корня с помощью возведения в квадрат. Если исходить из этого определения, то то, что эллипс – сжатая окружность, выводится из его уравнения, как свойство. Нормаль и касательная к эллипсу являются биссектрисами соответственно внутреннего и внешнего углов между радиусами-векторами, проведенными из точки касания в фокусы (рис 7). На чертеже видно, что луч, выходящий из F1, отразившись от касательный по формуле "угол падения равен углу отражения", попадает в фокус F2.
Если а>b, то эллипс вытянут вдоль оси X, и число а называют большой полуосью. И фокусы расположены на оси X. Если же b>а, то эллипс вытянут вдоль оси Y. И фокусы расположены на оси Y. Для него все рассуждения сохраняются, но с заменой в них x на y и а на b, соответственно. Очевидно, что если а=b, то фокусное расстояние обращается в ноль, фокусы совпадают и эллипс превращается в окружность с радиусом а и с центром в начале координат. Так что окружность – это частный случай эллипса (рис. 8).
Уравнение - уравнение эллипса с центром в точке C(d,e). Примеры 1.Составьте уравнение линии, полученной сжатием окружности х2+у2=25 по оси Y к оси Х с коэффициентом сжатия k, если k=3\5. Решение. Заданная окружность вписывается в квадрат со стороной 5. Следовательно, большая полуось эллипса а=5. По условию задачи , отсюда b=3 и уравнение эллипса: 2.При проектировании окружности на какую-нибудь плоскость Р диаметр АА1, параллельный этой плоскости, проектируется в натуральную величину. А все хорды, перпендикулярные к этому диаметру, сокращаются в отношении, равном cosj, где j - угол между плоскостью окружности Р1 и плоскостью Р. Поэтому проекция окружности есть эллипс с большой осью 2 а =АА1 и коэффициентом сжатия k=cosj (малая полуось равна a cosj) (рис. 9). 3. Эллипс используется в черчении для изображения окружности, расположенной не в плоскости чертежа, и в живописи при изображении окружности, не находящейся в плоскости, параллельной плоскости изображения (рис.10а). Шар изображают окружностью. Для того чтобы показать его объемность, в нем изображается "экватор" в виде эллипса и полюс Р (рис. 10б). Изображение полюсов получается параллельным переносом изображений полюсов на виде шара слева. Можно этот дополнительный чертеж не строить, а достаточно заметить, что из равенства: DО2СО=DР2РО=DР1РО=DQ1QО следует равенство: OC=OD=PP1=QQ1 и точки Р и Q выбираются так, чтобы выполнялись эти равенства.
|
|||||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 1106; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.67.237 (0.009 с.) |