Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Общие индексы качественных показателей

Поиск

 

Каждый качественный показатель связан с тем или иным объемным показателем, в расчете на единицу которого он исчисляется. Так, с объемом произведенной (проданной) продукции связаны такие качественные показатели, как цена р, себестоимость z и трудоемкость t.

В условиях рыночных отношений в экономике особое место среди индексов качественных показателей отводится индексу цен. С помощью индекса потребительских цен (ИПЦ) (Подробнее см. § 21.3.1) осуществляются оценка динамики цен на товары производственного и непроизводственного потребления, пересчет важнейших стоимостных показателей СНС из фактических цен в сопоставимые.

Индекс потребительских цен является общим измерителем инфляции, используется при корректировке законодательно устанавливаемого минимального размера оплаты труда, установлении ставок налогов и т.д.

Рассмотрим принципы построения агрегатных индексов качественных показателей на примере индекса цен.

Поскольку этот индекс характеризует изменение цен, индексируемой величиной в нем будет цена товара. Влияние количества проданных товаров должно быть устранено, а это возможно только в том случае, если количество продаваемых товаров неизменно в оба периода, т.е. количество товаров одного из периодов принято в качестве весов индекса.

Вопрос о том, количество проданных товаров какого периода (текущего или базисного) следует взять в качестве весов при построении агрегатного индекса, решается исходя из сферы его применения.

При построении индекса цен в качестве весов индекса обычно берут количество товаров, проданных в текущем (отчетном) периоде. Это объясняется тем, что такое исчисление индекса цен позволяет определить не только относительное изменение цен (путем деления числителя индекса Σ p1q1на его знаменатель Σ p0q0), но и абсолютную экономию (–) или абсолютный перерасход (+) денежных средств покупателей в результате изменения цен на эти товары (как разность между числителем и знаменателем индекса):

 

Σ∆p qp = Σ p1q1Σ p0q0.

Агрегатный индекс цен с отчетными весами впервые предложен в 1874 г. немецким экономистом Г. Пааше и носит его имя.

Формула агрегатного индекса цен Паше:

 

 

где Σ p1q1 фактическая стоимость продукции (товарооборот) отчетного периода;

Σ p0q1 – условная стоимость товаров, реализованных в отчетном периоде по базисным ценам.

Индекс цен Пааше показывает, во сколько раз возрос (уменьшился) в среднем уровень цен на массу товара, реализованную в отчетном периоде, или сколько процентов составляет его рост (снижение) в отчетном периоде по сравнению с базисным периодом.

Если из значения индекса цен Iр вычесть 100%, т.е. (Iр – 100), то разность покажет, на сколько процентов в среднем возрос (уменьшился) за это время уровень цен на массу товаров, реализованную в отчетном периоде.

При таком методе, рассчитав индекс цен по формуле (8.9), можно подсчитать экономический эффект от изменения цен.

Однако надо отметить, что указанный выбор весов при построении агрегатного индекса цен нельзя считать обязательным во всех случаях. В статистике многие задачи могут и должны решаться по-разному, в зависимости от конкретной цели и особенностей исследования. Проиллюстрируем это следующими рассуждениями. Как известно, во время экономического кризиса резко растут цены. В результате ряд продуктов выпадает из потребления населения, особенно малообеспеченных слоев. Допустим, что в условном базисном периоде в состав потребления входило 30 наименований продуктов (q0 = 30), а в текущем периоде – только 25 наименований (q1 = 25). Очевидно, что при такой ситуации индекс цен, рассчитанный по q1, неправильно отразит изменение цен на те продукты, которые выпали из потребления из-за чрезмерного повышения цен.

Поэтому в подобных случаях более правильно отразит изменение цен индекс, построенный по продукции базисного периода (предложен в 1864 г. немецким экономистом Э. Ласпейресом и носит его имя).

Формула агрегатного индекса цен Ласпейреса:

 

 

Итак, агрегатные индексы цен с текущими весами определяются по формуле (8.9), с базисными весами – по формуле (8.10). Эти индексы не идентичны. Значения индексов цен Пааше и Ласпейреса для одних и тех же данных не совпадают, так как имеют различное экономическое содержание.

Индекс Пааше характеризует изменение цен отчетного периода по сравнению с базисным по товарам, реализованным в отчетном периоде, и фактическую экономию (перерасход) от изменения цен, т.е. индекс цен Пааше показывает, на сколько товары в отчетном периоде стали дороже (дешевле), чем в базисном.

– Экономическое содержание индекса Ласпейреса другое: он показывает, на сколько изменились цены в отчетном периоде по сравнению с базисным, но по той продукции, которая была реализована в базисном периоде, и экономию (перерасход), которую можно было бы получить от изменения цен, т.е. условную экономию (перерасход). Иначе говоря, индекс цен Ласпейреса показывает, во сколько раз товары базисного периода подорожали (подешевели) из-за изменения цен на них в отчетном периоде. Поэтому применение формулы Ласпейреса ограничено особыми условиями исследования (например, при прогнозировании объема товарооборота, в связи с намечаемыми изменениями цен на товары в предстоящем периоде).

При выборе периода, на основе которого производится взвешивание, нужно иметь в виду два противоречащих друг другу требования:

1) задачи изучения структуры и динамики цен требуют, чтобы расчеты показателей цен проводились в течение достаточно длительного периода на одной и той же базе сравнения;

2) непрерывно происходящие изменения в структуре производства и потребления, в соотношении цен на отдельные продукты, появление новых продуктов и исчезновение старых, изменение качества продуктов требуют возможно более частого изменения базисного периода.

До перехода к рыночным отношениям отечественная статистика отдавала предпочтение индексу цен Пааше. В условиях же высокой инфляции взвешивание по весам отчетного периода (индекс Пааше) требует ежегодного (ежеквартального, ежемесячного) пересчета информации для формирования системы весов, что связано с большими затратами времени, материальных и трудовых ресурсов. Поэтому начиная с 1991 г. органы государственной статистики России определяют изменение общего уровня цен на товары и услуги по формуле Ласпейреса, которой отдается предпочтение и в зарубежной статистике. Наблюдение за изменением цен (тарифов) проводят на территории всех субъектов Российской Федерации.

Для характеристики динамики цен на потребительском уровне рассчитывается сводный индекс потребительских цен (ИПЦ), который отражает динамику цен конечного потребления.

«Идеальный» индекс цен Фишера (по имени американского экономиста И. Фишера) представляет собой среднюю геометрическую из произведения двух агрегатных индексов цен Ласпейреса и Пааше:

 

 

Идеальность формулы заключается в том, что индекс является обратимым во времени, т.е. при перестановке базисного и отчетного периодов полученный «обратный» индекс – это величина, обратная величине первоночального индекса (этому условию отвечает любой индивидуальный индекс).

Однако геометрическая форма индекса имеет принципиальный недостаток: она лишена конкретного экономического содержания. Так, в отличие от агрегатного индекса Пааше и Ласпейреса разность между числителем и знаменателем не покажет никакой реальной экономии (или потерь) из-за изменения цен.

Индекс Фишера в силу сложности расчета и трудности экономической интерпретации на практике используется довольно редко, чаще всего – при исчислении индексов цен за длительный период времени для сглаживания тенденций в структуре и составе объема продукции, в которых происходят значительные изменения.

Рассмотрим расчет индексов цен Пааше и Ласпейреса по данным табл. 8.3.

Задача 3. Имеются данные о продаже товаров на рынке (табл. 8.3). Определить:

1) индекс цен Пааше;

2) индекс цен Ласпейреса;

3) индекс физического объема продукции.

 

 

 

Рассмотрев индекс цен, аналогично рассуждаем и при построении всех других индексов качественных показателей.

Производство любой продукции связано с материальными затратами (сырье, топливо, энергия, износ оборудования и инструментов и пр.), а также с оплатой труда работников предприятий.

Сумма затрат в денежном выражении, связанных с производством и реализацией продукции или выполнением определенных работ, составляет издержки производства. Издержки производства производственных предприятий выступают как себестоимость продукции.

Себестоимость продукции (работ, услуг) – важнейший показатель эффективности деятельности предприятия, представляющий собой стоимостную оценку используемых в процессе производства продукции (работ, услуг) природных ресурсов, сырья, материалов, топлива, энергии, основных фондов, трудовых ресурсов, а также других затрат на ее производство и реализацию.

Очевидно, чем экономнее расходуются материалы, энергия, чем меньше другие виды материальных затрат, чем правильнее организованы труд и его оплата, тем меньше себестоимость продукции.

Себестоимость является частью отпускной цены продукции и, следовательно, стоимости продукции. Снижение себестоимости продукции (работ, услуг) без ущерба для ее качества или снижение ее удельного веса в полной стоимости продукции – важное условие обеспечения конкурентоспособности товара на рынке, источник получения дополнительной прибыли.

Индекс себестоимости продукции характеризует среднее изменение себестоимости единицы продукции отчетного периода по сопоставимому с базисным периодом кругу продукции. Формула агрегатного индекса себестоимости продукции имеет вид:

 

 

где Σz1q 1 – затраты на производство продукции отчетного периода;

Σz0q 1 – затраты на производство той же продукции, если бы себестоимость единицы продукции осталась на уровне базисного периода.

Рассчитанный по формуле (8.12) индекс себестоимости показывает, во сколько раз уменьшился (возрос) в среднем уровень себестоимости на продукцию, произведенную в отчетном периоде, или сколько процентов составляет его снижение (рост) в отчетном периоде по сравнению с базисным.

Если из значения индекса себестоимости вычесть 100%, т.е. (Iz – 100), то разность покажет, на сколько процентов в среднем уменьшился (возрос) уровень себестоимости на продукцию, произведенную в отчетном периоде.

Разность между числителем и знаменателем характеризует экономию (–) и перерасход (+) в затратах от снижения себестоимости единицы продукции:

 

zzq = Σz1q1 – Σz0q1.

 

 

Аналогично индексу цен исчисляются и средние индексы себестоимости продукции.

Рассмотрим применение среднего индекса цен на примере.

Задача 4. Пусть имеются данные о продаже товаров в магазине (табл. 8.4).

Таблица 8.4

Данные о продаже товаров

 

Товар, ед. изм. Продано в отчетном периоде p1q1, тыс. руб. Изменение цен на товары в отчетном периоде по сравнению с базисным, %
Туфли мужские, пары   +3
Костюмы, шт.   +6
Итого  

 

 

Следовательно, в отчетном периоде по сравнению с базисным цены на данную группу товаров повысились в среднем на 4,6%.

Рассмотрение методологии исчисления индексов и их применение в экономическом анализе позволяют сделать следующее обобщение.

Индивидуальные индексы являются обычными относительными величинами сравнения, т.е. могут быть названы индексами только в широком понимании этого термина (в целях единства методики и терминологии).

Важной особенностью общих индексов, построение и расчет которых составляют суть индексного метода, является то, что они обладают синтетическими и аналитическими свойствами.

Синтетические свойства общих индексов состоят в том, что они выражают относительные изменения сложных (разнотоварных) явлений, отдельные части и элементы которых непосредственно несоизмеримы.

Аналитические свойства общих индексов состоят в том, что посредством индексного метода определяется влияние факторов на изменение изучаемого показателя.

Таким образом, общие индексы являются синтетическими и аналитическими показателями, играющими важную роль в социально-экономических исследованиях.

Индексы средних величин

 

На динамику качественных показателей, уровни которых выражены средними величинами, оказывает влияние изменение структуры изучаемого явления. Под изменением структуры явления здесь понимают изменение доли отдельных единиц совокупности, из которых формируются средние, в общей их численности. Так, например, на среднюю себестоимость какого-либо изделия А может влиять не только изменение себестоимости этого изделия на предприятиях отрасли, но и изменение удельного веса (доли) предприятий с разной себестоимостью в общем выпуске этого изделия. Динамика среднего душевого дохода населения зависит от изменения среднего дохода каждого человека и от изменения количества людей с более высокими (низкими) доходами в общей численности населения.

Следовательно, на изменение среднего значения показателя могут оказывать воздействие одновременно два фактора: изменение значений осредняемого показателя и изменение структуры явления.

Так, например, средняя производительность труда на предприятии может возрасти за счет ее повышения у отдельных рабочих и увеличения доли рабочих с более высокой производительностью труда в общей численности рабочих, вырабатывающих одноименную продукцию. При этом могут наблюдаться случаи повышения средней производительности труда при снижении производительности труда у отдельных рабочих. Такое повышение будет обеспечено увеличением доли рабочих с более высокой производительностью труда. При изучении динамики средней урожайности сталкиваются с фактом изменения урожайности отдельных культур и изменением доли посевных площадей этих культур во всем посевном клине, т.е. структурных сдвигов.

Структурные сдвиги в экономике – это важные процессы совершенствования производства и большой дополнительный источник развития производительных сил общества. В связи с этим при анализе развития экономики страны важно определить, в какой мере это развитие зависит от структурных сдвигов, т.е. какой экономический эффект дает то или иное улучшение структуры производства (в разных масштабах, на различных участках).

Таким образом, при изучении динамики средней величины задача состоит в определении степени влияния двух факторов – изменений значений осредняемого показателя и изменений структуры явления. Эта задача решается с помощью индексного метода, т.е. путем построения системы взаимосвязанных индексов, в которую включаются индексы: переменного состава, постоянного состава и структурных сдвигов.

– Изучение совместного действия этих двух факторов на общую динамику среднего уровня осуществляется в статистике с помощью индекса переменного состава.

Индекс переменного состава представляет собой отношение двух взвешенных средних с изменяющимися (переменными) весами, показывающее изменение индексируемой средней величины.

Для любых качественных показателей индекс переменного состава можно записать в общем виде:

 

 

где х1, x0 уровни осредняемого показателя в отчетном и базисном периодах соответственно;

f1, f0 веса (частоты) осредняемого показателя в отчетном и базисном периодах соответственно.

– Чтобы элиминировать влияние изменения структуры совокупности на динамику средней величины, берут отношение средних взвешенных с одними и теми же весами (как правило, на уровне отчетного периода). Индекс, характеризующий динамику средней величины при одной и той же фиксированной структуре совокупности, носит название индекса постоянного (фиксированного) состава и исчисляется в общем виде:

 

 

После сокращения на Σf1 формула (8.16) принимает вид уже известной нам формулы агрегатного индекса качественного показателя:

 

 

Индекс постоянного состава показывает, как в отчетном периоде по сравнению с базисным изменилась средняя величина показателя по какой-либо однородной совокупности за счет изменения только самой индексируемой величины, т.е. когда влияние структурного фактора устранено.

Для измерения влияния только структурных изменений на исследуемый средний показатель исчисляют индекс структурных сдвигов, как отношение среднего уровня индексируемого показателя базисного периода, рассчитанного на отчетную структуру, к фактической средней этого показателя в базисном периоде:

 

 

В качестве весов (частот) индексов средних величин наряду с абсолютными показателями f могут использоваться и относительные показатели (частоты, доли) d. В последнем случае упомянутые индексы для любых качественных показателей х можно выразить в общем виде следующими формулами:

 

 

где d1, d0 доли единиц с определенным значением признака в общей совокупности в отчетном и базисном периодах соответственно (Σd = 1). Обратимся к примеру.

Задача 5. Имеются следующие данные (условные) о заработной плате работников организаций по трем отраслям экономики района (табл. 8.5).

 

Таблица 8.5



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 923; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.6.41 (0.008 с.)