Статистические закономерности. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Статистические закономерности.

Поиск

 

Последующее развитие науки показало, что эта точка зрения неверна: случайность не является следствием недостатка наших знаний, а объективно существует в природе. Однако, даже если согласиться с точкой зрения детерминистов, понятно, что «демона Лапласа» не существует и предсказать траектории движения всех атомов вряд ли когда-нибудь удастся. Следует ли из этого, что невозможно найти какие-либо закономерности в поведении тех объектов, которые мы не можем непосредственно наблюдать? Можно ли сказать, что движения невидимых атомов и молекул абсолютно непредсказуемы, т. е. хаотичны? Разумеется, нет! Дело в том, что поведение таких ненаблюдаемых объектов во многих случаях подчиняется статистическим закономерностям. Мы не можем предсказать, как будет двигаться каждый конкретный объект, но мы можем предвидеть, как поведёт себя всё множество объектов в целом. Предположим, что в помещении включили вентилятор. Мы никогда не будем знать, с какой скоростью и в каком направлении полетит каждая молекула воздуха. Однако можно точно рассчитать, с какой скоростью при этом двинется воздушный поток, как будет зависеть эта скорость от скорости вращения вентилятора, а та, в свою очередь, от мощности мотора. Мы не знаем, какая температура воздуха будет в Москве 1 июля следующего года, но можем почти с полной уверенностью сказать, что она будет выше, чем 1 января.

Статистические закономерности являются такими же полноправными закономерностями, как и механические. На основе таких закономерностей можно установить строгие физические законы, объясняющие, например, электрические явления или состояния газов при определённых условиях. Несмотря на то что мы не можем непосредственно наблюдать электроны или молекулы газов, мы можем с абсолютной точностью предсказать, сколько их в среднем будет двигаться в определённом направлении или находиться в определённом объёме. Статистические закономерности в полной мере можно обнаружить в социально-экономических процессах, связанных с человеческим поведением, так как, по известному литературному выражению, «статистика знает всё». Если изменится цена какого-либо товара, можно вычислить, насколько вырастет или снизится объём его продаж, хотя нельзя конкретно выяснить, кто именно пойдёт, а кто не пойдёт его покупать. Многие сложные социальные процессы подчиняются статистическим закономерностям, хотя и не так точно, как физические. Существует статистика пассажиропотоков в городском транспорте, оценивающая среднее число пассажиров, едущих в определённом направлении в различное время суток, или статистика авиаперевозок в зависимости от времени года.

В любом случае, когда удаётся выявить детерминистские или статистические закономерности в каких-либо явлениях, эти явления можно объяснять, прогнозировать и во многих случаях регулировать, т. е. можно сказать, что в них существует определённый порядок. Если же таких закономерностей обнаружить не удаётся, поведение системы считается хаотическим, непредсказуемым и нерегулируемым. К числу таких процессов относится поведение людей во время паники, вызванной внезапно возникшей опасностью.

Не все процессы, которые кажутся нам хаотичными, на самом деле являются такими. Задачей исследователей, занимающихся как естествознанием, так и социально-экономическими науками, является выявление неизвестных закономерностей. Вся история науки является историей открытия закономерностей в явлениях, прежде казавшихся случайными, в результате чего наш мир становится более понятным и предсказуемым.

 

Проверьте свои знания

 

1. Почему понимание порядка может быть различным в представлении разных людей?

2. Что такое детерминизм?

3. Что должен знать «демон Лапласа» для того, чтобы с абсолютной точностью предсказать будущее?

4. Как называются процессы, в которых не существует ни детерминизма, ни статистических закономерностей?

 

Задания

 

1. Подберите эпиграф к данному параграфу.

2. Приведите примеры статистических закономерностей в жизни общества; в производственных или финансовых процессах.

3. Используя дополнительные источники информации, сравните теологический, космологический и антропологически-этический де терминизмы. В чём их сходство и различие? Какая связь существует между детерминизмом и хаосом?

 

Симметрия

 

Одним из видов проявления порядка в природе является симметрия. В общем виде симметрию   можно определить как повторяемость каких-либо объектов или явлений. Она широко распространена в природе и используется человеком в самых разнообразных его произведениях (рис. 187). Симметрию можно наблюдать как во времени, так и в пространстве. Многие явления, такие как положение Луны, Солнца и звёзд, будут повторяться через определённый отрезок времени. Природные события – листопад и раскрытие почек на деревьях, таяние снега или разливы рек, отлёт и возвращение перелётных птиц – также имеют периодичность, хотя она выполняется не с такой точностью, как при астрономических наблюдениях. Такая периодичность и создаёт тот порядок, благодаря которому мы можем предсказывать будущие события.

Временные повторы широко используются в музыке и поэзии. Хорошо известно понятие ритма в музыке, где оно означает соотношение длительности нот в их последовательности. Ритмические свойства стихотворения определяются поэтическим размером, в котором оно написано. Размер зависит от порядка чередования ударений в стихотворной строке.

 

Рис. 187. М. К. Эшер «Лебеди». В графике художника Морица Корнелиса Эшера заложены глубокие принципы симметрии. Эшер говорил: «Все мои произведения – это игры. Серьёзные игры. Всё, что я делаю, – это игра. Я пpосто пытаюсь сложить маленьких звеpушек вместе – я не нахожу, что это легко, но я получаю невеpоятное удовольствие, находя способ соединить их. Меня забавляют все вопpосы, которые возникают, когда я pаботаю. Эти вопpосы дразнят меня, и моё самое большое удовольствие – это понять, о чём они, а затем найти ответы на них. Потом я делаю оттиск, чтобы другие смогли разделить мою радость. Вы называете Это математикой?..»

 

Рис. 188. Радиальная симметрия: А – цветок; Б – снежинка; В – морская звезда

 

Рифма в поэтических произведениях также служит для придания им определённого ритма: через определённое число слогов происходит повторение звука или похожих сочетаний звуков.

 

Радиальная симметрия

 

Симметрия в пространстве может проявляться в повторении некоторых фигур через определённые промежутки длины. Этот приём часто используют в линейных орнаментах, обрамляющих стену или край покрывала. Для более сложных фигур как в природе, так и в искусственных предметах характерна радиальная,   или лучевая, симметрия,   которая проявляется в том, что при повороте изображения на определённый угол оно сохраняет свой прежний вид. Представим себе окружность с определённым радиусом. На какой бы угол мы её ни повернули, она всегда останется той же окружностью. Нанесём на эту окружность четыре точки на равном расстоянии друг от друга. Теперь, для того чтобы такая фигура сохранила свой вид, её надо повернуть на 90, 180, 270° или, естественно, на 360°. Если таких точек шесть, угол поворота должен быть кратным 60°. Такая симметрия наглядно проявляется в строении снежинок, многих цветков и некоторых животных, таких как актиния или морская звезда (рис. 188). Радиальной симметрией обладают также многие молекулы (например, бензола) и кристаллы.

 

Двусторонняя симметрия.

 

Большинство животных, включая человека, обладают двусторонней симметрией   (рис. 189). При этом через объект можно провести прямую линию, которая будет делить его на две равные части. Эту линию называют осью симметрии. Если мы рассмотрим объекты с радиальной симметрией, то увидим, что они тоже обладают осями симметрии, но не одной, как в случае двусторонней симметрии, а несколькими. Например, в круге с четырьмя точками их будет две. Двусторонняя симметрия обладает одной интересной особенностью. Положите руки по обе стороны от прямой линии на равном расстоянии от неё. Вы увидите две руки, одинаковые по форме, но противоположные по положению, что можно заметить хотя бы по тому, что большие пальцы направлены в разные стороны (рис. 190). Таким образом, левая рука по положению соответствует не правой руке, а её отражению в зеркале. Поэтому такая симметрия называется также зеркальной. Посмотрите на себя в зеркало. Вы увидите точное собственное изображение с той только разницей, что право и лево поменяются местами. Если вы поднимете правую руку, ваш двойник в зеркале поднимет левую, и наоборот. Поднесите к зеркалу правую руку, и вы увидите, что она выглядит в точности так же, как левая рука без зеркала. Таким образом, оказывается, что ось симметрии делит объект не на две одинаковые части, а на части, представляющие собой зеркальное изображение друг друга.

Свойство зеркальной симметрии может проявляться и во времени. В этом качестве она часто используется в музыкальных произведениях. Самое простое представление о музыкальной зеркальной симметрии можно получить, если сыграть гамму в обычном и обратном направлении. Этот приём использовался в разных видах многими композиторами. Например, у Иоганна Себастьяна Баха в его произведении «Музыкальное приношение» используется «ракоходный канон», который исполняют две скрипки, одна из которых играет мелодию в порядке, противоположном другой.

Предметы с двусторонней симметрией обладают одной особенностью: как бы мы их ни сгибали и ни поворачивали, совместить их друг с другом невозможно. Попробуйте сделать это со своими руками и убедитесь, что ничего не получится. Если все пальцы будут направлены в одну сторону, то ладони – в разные. Если направить ладони в одну сторону, то большие пальцы окажутся направленными противоположно друг другу. Если же и ладони, и большие пальцы направить в одну сторону, то противоположно направленными станут все остальные пальцы. Таким образом, совместить в пространстве предмет с его зеркальным изображением невозможно.

 

Рис. 189. Двусторонняя симметрия цветка и человека

 

Рис. 190. Зеркальные изображения и оптическая изомерия молекул

 

Оптические изомеры.

 

Эта особенность играет большую роль во многих природных явлениях. Особенно интересно она проявляется в биохимических процессах. Представим себе молекулу органического вещества, состоящую из четырёх атомов (см. рис. 190). Расположим атомы A, B и C в вершинах треугольника, а атом D на прямой, перпендикулярной к плоскости этого треугольника. Если смотреть со стороны точки D так, чтобы точка А была перед нами, то возможны два варианта: либо В будет справа, а С – слева, либо наоборот. Эти два варианта обладают зеркальной симметрией и не могут быть совместимыми посредством каких угодно поворотов. Следовательно, молекулы одного и того же вещества могут существовать в двух вариантах, условно называемых «правым» и «левым». Химические свойства «правых» и «левых» молекул абсолютно одинаковы, а физические различаются. Основное различие состоит в том, что их растворы по-разному пропускают свет. Поэтому каждый из двух видов строения молекулы называется оптическим изомером.   Один вид называют D-изомером, а другой – L-изомером. Например, все аминокислоты в организме представлены L-изомерами, а все углеводы – D-изомерами. Противоположные изомеры не усваиваются клеткой и даже могут быть для неё вредными. Такое разделение появилось вместе с возникновением жизни на Земле и не менялось в течение всего процесса эволюции.

 

Проверьте свои знания

 

1. Как проявляется симметрия во времени в природных и общественных процессах? Какое свойство живого отражает симметрию во времени?

2. Что такое радиальная симметрия? Приведите примеры.

3. Объясните, почему двустороннюю симметрию иначе называют зеркальной.

4. Опираясь на знания, полученные в курсе биологии, объясните, с чем связано возникновение двусторонней симметрии в животном мире. В чём особенность живых организмов, обладающих радиальной симметрией?.

5. В каких системах нарушается равноправие D– и L-изомеров химических веществ?

 

Задания

 

1. Подберите эпиграф к данному параграфу.

2. Используя дополнительную литературу и ресурсы Интернета, подготовьте сообщение или презентацию на тему «Симметрия в природе и искусстве».

 

Cистемы и системный подход

 

 

Редукционизм и холизм.

 

Развитие науки и проведение исследований в самых разнообразных областях человеческого познания привели к выводу, что в природе, помимо строгих физических законов, существуют и иные, не менее значимые закономерности, без учёта которых знания о существующем в природе порядке остаются неполными. Как мы уже могли убедиться, основой научного подхода является представление о том, что, детально изучив свойства элементов, составляющих некий целостный объект, и силы взаимодействия между этими элементами, мы можем получить полное знание об исследуемом объекте. Такое представление называют элементаризимом   или редукционизмом   (от лат. reductio – возвращение, приведение обратно). Однако среди некоторых мыслителей существовал и противоположный подход, сформулированный ещё Аристотелем и заключающийся в том, что целое не может быть просто суммой своих частей, оно содержит в себе нечто большее, несводимое к свойствам отдельных частей. Высказывались мнения о том, что целое и является главным во всяком объекте, а его элементы подчиняются свойствам этого целого. Такой подход получил название холизма   (от греч. holos – целое).

 

Теория систем.

 

Попытки примирить эти два представления, каждое из которых имело свои достоинства и недостатки, привели к возникновению системного подхода и основанных на нём системных исследований. Впервые идея о системном подходе к исследованию самых разнообразных явлений – от механических до социально-экономических – была высказана русским врачом, философом и революционером Александром Александровичем Богдановым (1873–1928). Главная идея его книги «Тектология или всеобщая организационная наука» заключалась в том, что к изучению любого явления надо подходить с точки зрения его организации. Богданов полагал, что законы организации систем едины для любых объектов. Самые разнородные явления объединяются общими структурными связями и закономерностями.

Однако идеи Богданова не получили широкой известности, и в 30—40-х гг. XX в. австрийский биолог Людвиг фон Берталанфи (1901–1972) предложил свои, во многом схожие с позицией Богданова принципы, которые он обозначил как «Общая теория систем». На основе этих принципов был разработан системный подход   к исследованию самых разнообразных процессов и явлений. В рамках системного подхода любой объект (система) рассматривается как совокупность элементов (подсистем), которые находятся в постоянном взаимодействии друг с другом и с внешней средой. Существует много определений понятия «система». Приведём одно из них.

 

«Система – существующая как единое целое совокупность взаимосвязанных и взаимодействующих элементов, в которой функционирование каждого элемента подчинено необходимости сохранения целого».

 

При этом любой реально существующий в природе объект может рассматриваться и как система, состоящая из взаимодействующих частей, и как часть более общей и сложной системы. Если рассматривать, например, человека, то с точки зрения социологии, истории или экономики он может рассматриваться как часть или элемент сложной этнической и социально-экономической системы (рис. 191). Физиолог же будет рассматривать его как сложную систему, состоящую из взаимодействующих частей, которые представлены органами и тканями. Но каждый орган, ткань и даже каждая клетка, в свою очередь, также может рассматриваться как система. Например, элементами клетки являются мембраны, органоиды и биологически активные молекулы.

Таким образом, между системами не существует чёткой границы, и вопрос о том, что именно считать системой и её элементами, каждый раз решается исследователем в соответствии с поставленной им задачей. Уильям Росс Эшби, один из создателей кибернетики[21] – науки, основанной на тех же принципах, что и теория систем, говорил, что возможных событий в мире гораздо больше, чем тех, которые реально осуществляются.

 

Рис. 191. Человека можно рассматривать и как часть системы, и как сложную систему, состоящую из множества других систем

 

Поэтому каждый наблюдатель может учесть лишь малую часть всех возможностей.

 

«Следовательно, любая система, подчиняющаяся определённым требованиям, может быть представлена таким образом, что она будет обнаруживать разнообразие произвольно определённых «частей» просто за счёт изменения точки зрения наблюдателя».

 

Поэтому существует даже такое определение системы:

 

«Система есть то, что рассматривается как система».

 

 



Поделиться:


Последнее изменение этой страницы: 2021-04-05; просмотров: 484; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.206.19 (0.017 с.)