Рекомбинация наследственного материала, её медицинское значение. Комбинативная изменчивость и её механизмы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Рекомбинация наследственного материала, её медицинское значение. Комбинативная изменчивость и её механизмы.



Мейоз и оплодотворение обеспечивают получение организмами нового поколения эволюционно сложившегося, сбалансированного по дозам генов наследственного материала, на основе которого осуществляется развитие организма и отдельных его клеток. Благодаря этим двум механизмам в ряду поколений особей данного вида формируются определенные видовые характеристики и вид как реальная единица живой природы существует продолжительное время. Однако у разных представителей вида в силу постоянно идущего мутационного процесса один и тот же набор генов генома представлен разными их аллелями. Так как при половом размножении у многих видов в воспроизведении потомства принимают участие две особи, то совершенно очевидно, что в результате оплодотворения разные зиготы получают неодинаковый набор аллелей в их генотипах. Увеличению генотипического разнообразия представителей вида способствуют также механизмы, приводящие к перекомбинации родительских аллелей особи в ее гаметах. Действительно, если бы гаметы, образуемые организмом, были одинаковы по набору аллелей в их геноме, то у потомков одной пары организмов при раздельнополости или одного гермафродитного организма не наблюдалось бы генотипического разнообразия. В каждом новом поколении вида генотипически различными были бы лишь дети разных родителей.

Реально в природе наблюдается разнообразие потомков одних и тех же родителей. Например, родные братья и сестры различаются не только по полу, но и по другим признакам. Такие различия потомков объясняются тем, что в каждом акте оплодотворения встречаются генетически различающиеся гаметы. Механизмом, обеспечивающим разнообразие гамет, образуемых одним и тем же организмом, является мейоз, в ходе которого происходит не только уменьшение вдвое наследственного материала, попадающего в гаметы, но и эффективное перераспределение родительских аллелей между гаметами. Процессами, приводящими к перекомбинации генов и целых хромосом в половых клетках, являются Кроссинговер и расхождение бивалентов в анафазе I мейоза.

Кроссинговер. Этот процесс происходит в профазе I мейоза в то время, когда гомологичные хромосомы тесно сближены в результате конъюгации и образуют биваленты. В ходе кроссинговера осуществляется обмен соответствующими участками между взаимно переплетающимися хроматидами гомологичных хромосом. Этот процесс обеспечивает перекомбинацию отцовских и материнских аллелей генов в каждой группе сцепления. В разных предшественниках гамет Кроссинговер происходит в различных участках хромосом, в результате чего образуется большое разнообразие сочетаний родительских аллелей в хромосомах.

 

Понятно, что кроссинговер как механизм рекомбинации эффективен лишь в том случае, когда соответствующие гены отцовской и материнской хромосом представлены разными аллелями. Абсолютно идентичные группы сцепления при кроссинговере не дают новых сочетаний аллелей.

 

Кроссинговер происходит не только в предшественницах половых клеток при мейозе. Он наблюдается также в соматических клетках при митозе. Соматический кроссинговер описан у дрозофилы, у некоторых видов плесеней. Он осуществляется в ходе митоза между гомологичными хромосомами, однако его частота в 10 000 раз меньше частоты мейотического кроссинговера, от механизма которого он ничем не отличается. В результате митотического кроссинговера появляются клоны соматических клеток, различающихся по содержанию в них аллелей отдельных генов. Если в генотипе зиготы данный ген представлен двумя разными аллелями, то в результате соматического кроссинговера могут появиться клетки с одинаковыми либо отцовскими, либо материнскими аллелями данного гена.

Расхождение бивалентов в анафазе I мейоза. В метафазе I мейоза в экваториальной плоскости ахромативнового веретена выстраиваются биваленты, состоящие из одной отцовской и одной материнской хромосомы. Расхождение гомологов, которые несут разный набор аллелей генов в анафазе I мейоза, приводит к образованию гамет, отличающихся по аллельному составу отдельных групп сцепления.

 

В связи с тем что ориентация бивалентов по отношению к полюсам веретена в метафазе I оказывается случайной, в анафазе I мейоза в каждом отдельном случае к разным полюсам направляется гаплоидный набор хромосом, содержащий оригинальную комбинацию родительских групп сцепления. Разнообразие гамет, обусловленное независимым поведением бивалентов, тем больше, чем больше групп сцепления в геноме данного вида. Оно может быть выражено формулой 2 n, где п — число хромосом в гаплоидном наборе. Так, у дрозофилы п = 4 и количество типов гамет, обеспечиваемое перекомбинацией родительских хромосом в них, равно 24 = 16. У человека п = 23, и разнообразие гамет, обусловленное этим механизмом, соответствует 223, или 8388608.

Кроссинговер и процесс расхождения бивалентов в анафазе I мейоза обеспечивают эффективную рекомбинацию аллелей и групп сцепления генов в гаметах, образуемых одним организмом.

Оплодотворение. Случайная встреча разных гамет при оплодотворении приводит к тому, что среди особей вида практически невозможно появление двух генотипически одинаковых организмов. Достигаемое с помощью описанных процессов генотипическое разнообразие особей предполагает наследственные различия между ними на базе общего видового генома.

Таким образом, геном как высший уровень организации наследственного материала благодаря мейозу и оплодотворению сохраняет свои видовые характеристики. Но одновременно эти же процессы обеспечивают индивидуальные наследственные различия особей, в основе которых лежит рекомбинация генов и хромосом, т.е. комбинативную изменчивость. Комбинативная изменчивость, проявляющаяся в генотипическом разнообразии особей, повышает выживаемость вида в изменяющихся условиях его существования.

 

                   Из методички:

Комбинативная изменчивость зависит от перекомбинации аллелей в генотипах потомков по сравнению с генотипами родителей. Она связана с получением сочетаний генов в генотипе.

Комбинативная изменчивость возникла с появлением полового процесса. Вероятность появления двух одинаковых в генетическом отношении потомков равна нулю(исключение-однояцевые близнец).

Практическая любая особь оказывается генетически уникальной. Это важно для действия естественного отбора.

Причины комбинативной изменчивости:

1. Независимое расхождение хромосом при мейозе;

2. Случайная встреча гамет при оплодотворении;

3. Рекомбинация генов блягодаря кроссинговеру.

Все источники комбинативной изменчивости действуют независимо и одновременно, создавая огромное разнообразие генотпов. Однако в эволюции выработались механизмы, не только определяющие увеличение изменчивости, но и ведущие к понижению и даже к разрушению комбинаций генов. Именно поэтому часто в потомстве выдающихся по своим качествам живых организмов появляются особи, уступающие родителям. А на уровне особи генетическая стабильность поддерживается механизмом митоза и распределением генов в геноме по группам сцепления в определенных хромосомах, а на уровне ДНК – механизм репарации.

КИ изменчивость является мощным фактором, повышающим гетерогенность популяций. Подсчитано, что около 98% всех наследственных изменений в популяции обязано своим распространением процессу генетической комбинаторики первично сравнительно редких мутаций. Возможность комбинативной изменчивости зависит от наличия разнообразного исходного материала, поставляемого мутационным процессом.

 

Примером проявления комбинативной изменчивости может быть рождение у родителей, гетерозиготных по II и III группам крови I^A,I^B детей с любой из четырех групп крови по системе АВО. Другим примером комбинативной изменчивости являются межрасовые браки, результатом которых является переход многих генов в гетерозиготное состояние и повышение жизнеспособности потомства. Высокий уровень КИ обусловлен большим Количеством генов, которые объединены в 23 группы сцепления. Изменчивость. Является источником бесконечного разнообразия сочетаемых признаков.

В эволюции КИ имеет огромное значение и ведет к появлению бесконечно большого разнообразия генотипов и фенотипов, служит неиссякаемым источником наследственного разнообразия видов и основой для естественного отбора. В природе играет роль в видообразовании. В селекции комбинативная изменчивость используется для выведения новых сортов растений, животных и штаммов микроорганизмов.

КИ дает возможность организмам приспосабливаться к изменяющимся условиям окружающей среды, тем самым способствуя выживанию вида в изменяющихся условиях его существования.

 



Поделиться:


Последнее изменение этой страницы: 2021-04-04; просмотров: 615; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.22.250 (0.007 с.)