Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Назначение вероятности определенным событиям требует информации, которой мы просто не располагаем.Содержание книги
Поиск на нашем сайте
Другие исследователи прибавляли к этим аргументам свои: непонятно, как количественно оценивать такие часто встречающиеся на практике понятия, как "в большинстве случаев", "в редких случаях", или такие приблизительные оценки, как "старый" или "высокий"; применение теории вероятности требует "слишком много чисел", что вынуждает инженеров давать точные оценки тем параметрам, которые они не могут оценить; Обновление вероятностных оценок обходится очень дорого, поскольку требует большого объема вычислений. Все эти соображения породили новый формальный аппарат для работы с неопределенностями, который получил название нечеткая логика (fuzzy logic) или теория функций доверия (belieffunctions). Этот аппарат широко используется при решении задач искусственного интеллекта и особенно при построении экспертных систем. Нечеткая логика будет рассмотрена ниже в этой главе, а о теории функций доверия (ее также называют теорией признаков Демпстера— Шафера) мы поговорим в главе 21. Однако в последние годы адвокаты теории вероятностей предприняли довольно эффективную контратаку, а потому мы также представим читателям основные концепции этой теории и ее главных конкурентов, а обзор дальнейшего развития работ в этом направлении отложим до следующей главы Экспертные системы и теория вероятностей В этом разделе будут рассмотрены те аспекты теории вероятностей, которые имеют отношение к представлению неопределенностей. Мы начнем с понятия условной вероятности и остановимся на тех причинах, по которым вероятностный подход критикуется большинством исследователей, занимающихся экспертными системами. Затем мы вернемся к коэффициентам уверенности, которые обсуждались в главе 3 в связи с системой MYCIN, рассмотрим их подробнее и сравним результаты, которые получаются при использовании этого аппарата и аппарата теории вероятностей. Условная вероятность Условная вероятность события d при данном s — это вероятность того, что событие d наступит при условии, что наступило событие s. Например, вероятность того, что пациент действительно страдает заболеванием d, если у него (или у нее) обнаружен только симптом s. В традиционной теории вероятностей для вычисления условной вероятности события d при данном s используется следующая формула: P(d|s)=(d^ s)/P(S) (9.1) Как видно, условная вероятность определяется в терминах совместимости событий. Она представляет собой отношение вероятности совпадения событий d и s к вероятности появления события s. Из формулы (9.1) следует, что P(d^s)=P(d|s)P(d). Если разделить обе части на P(s) и подставить в правую часть (9.1), то получим правило Байеса в простейшем виде: P(d|s)=(s|d)P(d)/P(S) (9.2) Это правило, которое иногда называют инверсной формулой для условной вероятности, позволяет определить вероятность P(d | s) появления события d при условии, что произошло событие s через известную условную вероятность P(s | d). В полученном выражении P(d) — априорная вероятность наступления события d, a P(d | s) — апостериорная вероятность, т.е. вероятность того, что событие d произойдет, если известно, что событие s свершилось. Для систем, основанных на знаниях, формула (9.2) гораздо удобнее формулы (9.1), в чем вы сможете убедиться в дальнейшем. Предположим, что у пациента имеется некоторый симптом заболевания, например боль в груди, и желательно знать, какова вероятность того, что этот симптом является следствием определенного заболевания, например инфаркта миокарда или перикардита (воспаление каверн в легких), или чего-нибудь менее серьезного, вроде несварения желудка. Для того чтобы вычислить вероятность Р(инфаркт миокарда боль в груди) по формуле (9.1), нужно знать (или оценить каким-либо способом), сколько человек в мире страдают таким заболеванием и сколько человек и больны инфарктом миокарда, и жалуются на боль в груди (т.е. имеют такой же симптом). Как правило, такая информация отсутствует, особенно последняя, которая нужна для вычисления вероятности Р (инфаркт миокарда л боль в груди). Таким образом, определение, данное формулой (9.1), в клинической практике не может быть использовано. Отмеченная сложность получения нужной информации явилась причиной негативного отношения многих специалистов по искусственному интеллекту к вероятностному подходу вообще (см., например, [Charniak and McDermott, 1985, Chapter 8]). Это негативное отношение подкреплялось тем, что в большинстве классических работ по теории вероятностей понятие вероятности определялось как объективная частотность (частота появления при достаточно продолжительных независимых испытаниях). Однако существует мнение, что эти базовые предположения небесспорны с точки зрения практических приложений (см., например, [Pearl, 1982] и [Cheeseman, 1985]). Сторонники такого подхода придерживаются субъективистской точки зрения на определение вероятности, который позволяет иметь дело с оценками совместного появления событий, а не с действительной частотой. Такой взгляд на вещи связывает вероятность смеси событий с субъективной верой в то, что событие действительно наступит. Например, врач может не знать или не иметь возможности вычислить, какая часть пациентов, жалующихся на боль в груди, страдает инфарктом миокарда, но на основании собственного опыта он может оценить, у какой части его пациентов, страдающих этим заболеванием, встречался такой симптом. Следовательно, он может оценить значение вероятности Р(боль в груди | инфаркт миокарда). Субъективный взгляд на природу вероятности тесно связан с правилом Байеса по следующей причине. Предположим, мы располагаем достаточно достоверной оценкой вероятности P(s | а), где 5 означает симптом, a d — заболевание. Тогда по формуле (9.2) можно вычислить вероятность P(d\ s). Оценку вероятности P(d) можно взять из публикуемой медицинской статистики, а оценить значение P(s) врач может на основании собственных наблюдений. Вычисление P(d | s) не вызывает затруднений, когда речь идет о единственном симптоме, т.е. имеется множество заболеваний D и множество симптомов S, причем для каждого члена из D нужно вычислить условную вероятность того, что у пациентов, страдающих этим заболеванием, наблюдался один определенный симптом из множества S. Тем не менее, если в множестве D имеется т членов, а в множестве S — п членов, потребуется вычислить тп + т + п оценок вероятностей. Это отнюдь не простая работа, еcли в системе медицинской диагностики используется до 2000 видов заболеваний и огромное число самых разнообразных симптомов. Но ситуация значительно усложняется, если мы попробуем включить в процесс составления диагноза не один симптом, а несколько. В более общей форме правило Байеса имеет вид P(d|s1^...^sk) = P(s1^...^sk|d)P(d)/P(s1^...^sk) (9.3) и требует вычисления (mn)k + m + nk оценок вероятностей, что даже при небольшом значении А; очень много. Эти оценки вероятностей требуются нам по той причине, что в общем случае для вычисления P(s1 ^....^ sk) нужно предварительно вычислить произведения вида P(s1 | s2 ^.. .^sk) P(s2 | s3 ^...^sK)... P(sk). Однако, если предположить, что некоторые симптомы независимы друг от друга, объем вычислений существенно снижается. Независимость любой пары симптомов Si, и Sj означает, что P(Si)=P(Sl|Sj), Из чего следует соотношение P(Si^Sj)=P(Si)P(Sj). Если все симптомы независимы, то объем вычислений будет таким же, как и в случае учета при диагнозе единственного симптома. Но, даже если это и не так, в большинстве случаев можно предположить наличие условной независимости. Это означает, что пара симптомов s\ и Sj является независимой, поскольку в нашем распоряжении имеются какие-либо дополнительные свидетельства на этот счет или фундаментальные знания Е. Таким образом, P(Si|Sj,E)=P(Si|E). Например, если в моем автомобиле нет горючего и не работает освещение, я могу смело сказать, что эти симптомы независимы, поскольку моих познаний в устройстве автомобиля вполне достаточно, чтобы предположить, что между ними нет никакой причинной связи. Но если автомобиль не заводится и не работает освещение, то заявлять, что эти симптомы независимы, нельзя, поскольку они могут быть следствием одной и той же неисправности аккумуляторной батареи. Степень доверия к симптому "не работает освещение" только увеличится, если обнаружится, что к тому же и двигатель не заводится. Необходимость отслеживать такого рода связи в программе и соответственно корректировать степень доверия к симптомам значительно увеличивает объем вычислений в общем случае (см. об этом в работе [Cooper, 1990]). Таким образом, использование теории вероятности ставит перед нами следующие проблемы, которые лучше всего сформулировать в терминах задачи выбора: либо априори предполагается, что все данные независимы, и использовать менее трудоемкие методы вычислений, за что придется платить снижением достоверности результатов; либо нужно организовать отслеживание зависимости между используемыми данными, количественно оценить эту зависимость, реализовать оперативное обновление соответствующей нормативной информации, т.е. усложнить вычисления, но получить более достоверные результаты.
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 257; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.185.12 (0.011 с.) |