Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Программа MORE формирует предположительные значения коэффициентов следующим образом.
Содержание книги
- Скомбинировать их таким образом, чтобы получить желаемый эффект.
- Множественное наследование в CLOS и clips
- В CLOS поддерживаются три базовых метакласса.
- Объекты в основном являются средствами реализации вычислений.
- В которых позитивные литералы сгруппированы слева от знака стрелки, а негативные справа.
- Может рассматриваться в качестве процедуры. Такая процедура предполагает следующий порядок выполнения операций.
- Поиск доказательства в системе резолюций
- Ранее мы уже видели, что фразу, содержащую предположение, можно представить с помощью исчисления предикатов первого порядка. Фраза
- Ans является выражением Ехрг2, в котором неизвестная U вынесена в левую часть.
- Назначение вероятности определенным событиям требует информации, которой мы просто не располагаем.
- Ранжировать набор гипотез после обработки всех признаков.
- Множество, определенное такой характеристической функцией, представляется формулой
- Которая после подстановки дает
- В основу оболочки KADS положено пять базовых принципов.
- Некоторые программные средства, впервые разработанные для EMYCIN, в дальнейшем стали типовыми для большинства оболочек экспертных систем. Среди таких средств следует отметить следующие.
- Графический интерфейс модели предметной области
- В модели предметной области можно выделить четыре основных аспекта, которые явились следствием применения онтологического анализа, как отмечалось в разделе 10. 1. 3.
- Приобретение новых знаний на основе существующих
- Если: Имеется решение менее радикальное, чем
- Классификация задач экспертных систем
- Теперь посмотрим, как соотносится описанная ранее классификация экспертных систем с предложенной Кленси иерархической схемой операций.
- Общность эвристической классификации
- В разделе упражнений вы встретите набор правил на языке clips, которые соответствуют определению, сформулированному в рассматриваемом документе.
- Эти правила соответствуют этапу абстрагирования данных.
- При проектировании программ эвристической классификации, таких как MUD или mycin, Процесс уточнения правил является, по существу, шестиэтапным.
- Программа MORE формирует предположительные значения коэффициентов следующим образом.
- Пользователи предпочли бы, чтобы программа MORE использовала каким-то образом Модель событий для формирования предположительных значений коэффициентов и задавала меньше вопросов общего характера.
- В чем состоит отличие между моделями событий и правил в системе MORE?
- Рабочая среда инженерии знаний TDE
- Методика вариативного построения гипотез и их проверки оказывается особенно полезной в тех случаях, когда
- Каждый управляющий слот можно рассматривать как консеквентную часть правила, условная часть которого сопоставима с ситуацией, описанной компонентами прототипа
- База знаний программы internist формируется следующим образом.
- Разделив модели заболеваний, программа может использовать ряд альтернативных стратегий, которые выбираются в зависимости от количества обрабатываемых гипотез.
- Свои знания пользователи вводят в систему, манипулируя пиктограммами (в этом смысле процедура ввода знаний напоминает использованную в системе OPAL (см. Главу 10)).
- Что понимается под прототипом в системе centaur. Какие функции возлагаются на прототипы.
- Области применения методов конструктивного решения проблем
- Программа R1 разбивает задачу конфигурирования на шесть подзадач, каждая из которых, в свою очередь, может быть разбита на более мелкие подзадачи.
- Стратегии разрешения конфликтов LEX и МЕА
- Мак-Дермот разделил все правила системы R1 на три категории в зависимости от их отношения к методу Match.
- Совершенствование системы XCON
- ГЛАВА 15. Решение проблем конструирования (II)
- Большую роль в системе MOLGEN (как, впрочем, и в других приложениях, предназначенных для решения проблем конструирования) играют следующие три операции с ограничениями.
- Извлечение, представление и применение знаний о проектировании
- Итоги анализа систем решения проблем конструирования
- Ваша задача — разработать три новых управляющих правила, которые организуют работу правил clash, start и finish.
- Формирование пояснений на основе фреймов
- Идентификационный номер пациента: 7446
- Формирование пояснений и автоматическое программирование
- Перспективы дальнейших исследований методов формирования пояснений
- По своему назначению и функциональным возможностям инструментальные программы, применяемые при проектировании экспертных систем, можно разделить на четыре достаточно больших категории.
Предположим, что неисправность D проявляется в виде симптома S1 а появление симптома S1 влечет за собой и появление симптома S2. В таком случае программа MORE предполагает, что отрицательный коэффициент уверенности, назначенный правилу, которое связывает симптом S1 с гипотезой D, будет больше или равен отрицательному коэффициенту, назначенному правилу, которое связывает симптом S2 с гипотезой D. В схеме модели событий на рис. 12.2 ожидается, что С1= > С2. Здесь коэффициентом С, оценивается связь между симптомом S1 и гипотезой D, а коэффициентом С2 — связь между симптомом S2 и гипотезой D.
Почему предполагается такое соотношение между значениями коэффициентов, интуитивно понятно. Если отсутствие симптома S1 является более веским аргументом против гипотезы D, то отсутствие симптома S2 не меняет положения дел. Если вновь вернуться к модели событий на рис. 12.1, то отрицательная связь между притоком воды и повышением уровня содержания неэмульсионной воды должна быть более "сильной", чем связь между притоком воды и повышением вязкости.
Диагностическая значимость симптома является величиной, обратной количеству гипотез, в которых учитывается наличие этого симптома. В модели событий, схема которой представлена на рис. 12.3, программа MORE предполагает, что С1 > С2, поскольку появление симптома S1 может быть вызвано только неисправностью (гипотезой) D1, a появление симптома S2 может быть вызвано и другими неисправностями.
Рис. 12.2. Отрицательные коэффициенты достоверности в цепочке причинно-следственной связи
Рис. 12.3. Положительные коэффициенты достоверности в случае множественной связи симптома с гипотезами
Программа MORE также оценивает и отношения между значениями коэффициентов в правилах одного семейства (т.е. в правилах, делающих одинаковое заключение или, что то же самое, относящихся к одной и той же гипотезе). Например, если в семейство правил добавляется новое условие проявления симптома, которое увеличивает условную достоверность симптома, это скажется на тех правилах, которые имеют большие отрицательные значения коэффициентов, чем составные правила. (Напомним, что составными называются правила, расширенные при добавлении нового условия.) Рациональность этих предположений заключается в том, что чем больше мы рассчитываем на появление определенного симптома при данной гипотезе (при данной неисправности), тем сильнее будет наше недоверие к этой гипотезе при отсутствии такого симптома.
Каждое из таких предположений основано на стремлении сохранить взаимную согласованность коэффициентов в правилах одного семейства.
Опыт эксплуатации системы MORE
В одной из своих ранних работ, посвященных созданию системы MYCIN, Шортлифф обратил внимание на необходимость разработки такого механизма извлечения знаний, который помогал бы эксперту назначать порождающим правилам коэффициенты уверенности [Shortliffe, 1976]. В сборнике [Buchanan and Shortliffe, 1984, Chapter 10, Section 5] собрано множество статей, в которых обсуждается ряд вопросов, связанных с этой проблемой. В этих статьях, в частности, обсуждается, как добавлять новые правила в существующий набор и как модифицировать ранее сформулированные правила.
Тот подход, который использован в программе MORE, достаточно прозрачен и понятен. Но в этой программе совершенно не затрагивается вопрос о независимости значений коэффициентов, который был в свое время поднят Шортлиффом. В главе 6 мы видели, что применение теоремы Байеса требует, чтобы свидетельства в пользу гипотез были независимыми, если мы собираемся комбинировать их параметры с помощью простой мультипликативной схемы.
Шортлифф предложил сгруппировать зависимые свидетельства в одном правиле, а не распределять их по множеству и рассматривать такую группу свидетельств в качестве "суперсимптома". Оценку весомости этого суперсимптома можно сделать на основе аппроксимации конъюнкции весов индивидуальных свидетельств. В программе MORE это предложение не реализовано, но в ней имеется вся необходимая для этого информация, представленная в модели событий. Анализ функционирования системы подтвердил предположение, что при нарушении независимости свидетельств коэффициенты уверенности отклоняются в значительно большем диапазоне, чем вероятности (см. об этом в [Buchanan and Shortliffe, 1984, Chapter 11, Section 5]).
Кан обратил внимание на другие проблемы, обнаруженные при эксплуатации прототипа системы MORE.
|