ТОП 10:

Теперь посмотрим, как соотносится описанная ранее классификация экспертных систем с предложенной Кленси иерархической схемой операций.



Кленси относит интерпретацию к родовым операциям, таким образом, задача интерпретации "накрывает" любые другие задачи, в том или ином виде выполняющие описание обслуживаемой системы. В частности, выделенные в первой классификации задачи (категории экспертных систем) предсказание и управление теперь превращаются в разновидность задачи интерпретация.

Мониторинг и диагноз становятся вариантами задачи идентификации, которая, в свою очередь, является разновидностью задачи интерпретации. Задачу наладка можно включить в задачу диагноз, хотя частично она включает и задачу модификация (чтобы привести обслуживаемую систему в режим нормальной работы).

Проектирование остается базовой категорией, а обучение "поглощается" задачей модификация, так же, как и ремонт. Задача планирование превращается в один из вариантов задачи проектирование.

Как уже отмечалось, то внимание, которое мы уделяем вопросам классификации, объясняется не только любовью к отвлеченным теоретическим рассуждениям. В идеале мы стремимся к тому, чтобы иметь возможность отобразить множество методов решения проблем на множество задач. Тогда можно было бы сказать, какой из методов наиболее приемлем для любой заданной задачи. Вклад Кленси в этот вопрос — выявление определенного метода решения проблем, эвристической классификации, к рассмотрению которой мы сейчас и перейдем. Мы уделяем этому методу так много внимания по той простой причине, что он достаточно понятен и может быть использован для характеристики поведения множества систем, которые мы рассматривали в предыдущих главах

Классификация методов решения проблем

Классификация — это одна из наиболее распространенных проблем в любой предметной области. Например, эксперты в области ботаники или зоологии первым делом пытаются определить место в существующей таксономии для вновь открытого растения или животного. Как правило, система классов имеет явно выраженную иерархическую организацию, в которой подклассы обладают определенными свойствами, характерными для своих суперклассов, причем классы-соседи на одном уровне иерархии являются взаимно исключающими в отношении наличия или отсутствия определенных наборов свойств

Эвристическое сопоставление

Кленси отметил, что одна из важнейших особенностей классификации состоит в том, что эксперт выбирает категорию из ряда возможных решений, которые можно заранее перечислить. Когда мы имеем дело с простыми вещами или явлениями, то для их классификации вполне достаточно бросающихся в глаза свойств объектов. Это позволяет почти мгновенно сопоставлять данные и категории. В более сложных случаях таких лежащих на поверхности свойств может оказаться недостаточно для того, чтобы правильно определить место объекта в иерархической схеме классификации. В этом случае нам остается уповать на тот метод, который Кленси назвал эвристической классификацией. Суть его состоит в установлении неиерархических ассоциативных связей между данными и категориями классификации, которое требует выполнения промежуточных логических заключений, включающих, возможно, и концепции из другой таксономии.

На рис. 11.3 показаны три основных этапа выполнения эвристической классификации: абстрагирование от данных, сопоставление абстрактных категорий данных с абстрактными категориями решений (утолщенная стрелка) и конкретизация решения. Рассмотрим их по очереди.

Рис. 11.3. Структура логических связей при эвристической классификации ([Clancey, 1985])

Абстрагирование от данных. Часто бывает полезно абстрагироваться от данных, характеризующих конкретный случай. Так, при диагностировании заболевания зачастую важ_но не столько то, что у пациента высокая температура (скажем, 39.8°), а то, что она выше нормальной. То есть врач обычно рассуждает в терминах диапазона температур, а не в терминах конкретного ее значения.

Эвристическое сопоставление. Выполнить сопоставление первичных данных в конкретном случае и окончательного диагноза довольно трудно. Гораздо легче сопоставить более абстрактные данные и достаточно широкий класс заболеваний. Например, повышенная температура может служить индикатором лихорадки, наводящей на мысль о инфекционном заражении. Данные "включают" гипотезы, но на относительно высоком уровне абстракции. Такой процесс сопоставления имеет ярко выраженный эвристический характер, поскольку соответствие между данными и гипотезами на любом уровне не бывает однозначным и из общего правила может быть множество исключений. Анализ данных, которые "вписываются" в определенную абстрактную категорию, просто позволяет отбирать решения, лучше согласующиеся с абстрактами решений.

Конкретизация решений. После того как определена абстрактная категория, которая сужает пространство решений, нужно определить в этом пространстве конкретные решения-кандидаты и каким-то образом их ранжировать. Это может потребовать дальнейших размышлений, в которые включаются уже количественные параметры данных, или даже сбора дополнительной информации. В любом случае целью этой процедуры является отбор "соревнующихся" гипотез в пространстве решений и последующее их ранжирование — сортировка по степени правдоподобия.

Кленси различает три варианта построения абстрактных категорий данных.

Определительный. В этом варианте в первую очередь рассматриваются характерные признаки класса объектов, и он во многом напоминает таксономический подход в ботанике и зоологии.

Количественный. В этом варианте абстрагирование выполняется исходя из количественных характеристик, как это было сделано в упоминавшемся выше примере с температурой пациента.

Обобщение. Этот вариант основывается на иерархии характерных свойств. Например, пациенты, обладающие подавленной иммунной активностью, в более общем смысле могут рассматриваться как потенциальные носители инфекции.

На рис. 11.4 представлена эвристическая классификация в контексте программы медицинской диагностики MYCIN, которую мы обсуждали в главе 3.

Исходными являются данные анализа крови пациента (количество лейкоцитов). Сначала выполняется количественное абстрагирование от конкретного значения этого показателя, который оценивается как низкий, что, в свою очередь, является характерным признаком лейкопении (здесь мы имеем дело с определительным вариантом абстрагирования). Обобщение лейкопении — подавленная иммунная активность, а обобщение последней— повышенная склонность к переносу инфекции (т.е. такие пациенты более подвержены воздействию различных микроорганизмов). Повышенная склонность к переносу инфекции является уже родовой категорией и наводит на мысль о наличии инфекции, вызванной грамотрицательными микроорганизмами (т.е. инфекции, связанной с определенным классом бактерий). Затем это родовое решение конкретизируется и предполагается, что источником инфекции являются бактерии E.Coli.

В системе MYCIN сопоставление данных и абстрактных категорий решений выполняется с помощью порождающих правил, а эвристическая природа такого сопоставления выражается коэффициентами уверенности. Эти коэффициенты можно рассматривать как заложенную в порождающее правило меру "строгости" соответствия между предпосылкой и выводом. Другие правила затем будут уточнять выполненное сопоставление и таким образом "подстраивать" коэффициент уверенности







Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.95.131.208 (0.005 с.)