Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теперь посмотрим, как соотносится описанная ранее классификация экспертных систем с предложенной Кленси иерархической схемой операций.Содержание книги
Поиск на нашем сайте
Кленси относит интерпретацию к родовым операциям, таким образом, задача интерпретации "накрывает" любые другие задачи, в том или ином виде выполняющие описание обслуживаемой системы. В частности, выделенные в первой классификации задачи (категории экспертных систем) предсказание и управление теперь превращаются в разновидность задачи интерпретация. Мониторинг и диагноз становятся вариантами задачи идентификации, которая, в свою очередь, является разновидностью задачи интерпретации. Задачу наладка можно включить в задачу диагноз, хотя частично она включает и задачу модификация (чтобы привести обслуживаемую систему в режим нормальной работы). Проектирование остается базовой категорией, а обучение "поглощается" задачей модификация, так же, как и ремонт. Задача планирование превращается в один из вариантов задачи проектирование. Как уже отмечалось, то внимание, которое мы уделяем вопросам классификации, объясняется не только любовью к отвлеченным теоретическим рассуждениям. В идеале мы стремимся к тому, чтобы иметь возможность отобразить множество методов решения проблем на множество задач. Тогда можно было бы сказать, какой из методов наиболее приемлем для любой заданной задачи. Вклад Кленси в этот вопрос — выявление определенного метода решения проблем, эвристической классификации, к рассмотрению которой мы сейчас и перейдем. Мы уделяем этому методу так много внимания по той простой причине, что он достаточно понятен и может быть использован для характеристики поведения множества систем, которые мы рассматривали в предыдущих главах Классификация методов решения проблем Классификация — это одна из наиболее распространенных проблем в любой предметной области. Например, эксперты в области ботаники или зоологии первым делом пытаются определить место в существующей таксономии для вновь открытого растения или животного. Как правило, система классов имеет явно выраженную иерархическую организацию, в которой подклассы обладают определенными свойствами, характерными для своих суперклассов, причем классы-соседи на одном уровне иерархии являются взаимно исключающими в отношении наличия или отсутствия определенных наборов свойств Эвристическое сопоставление Кленси отметил, что одна из важнейших особенностей классификации состоит в том, что эксперт выбирает категорию из ряда возможных решений, которые можно заранее перечислить. Когда мы имеем дело с простыми вещами или явлениями, то для их классификации вполне достаточно бросающихся в глаза свойств объектов. Это позволяет почти мгновенно сопоставлять данные и категории. В более сложных случаях таких лежащих на поверхности свойств может оказаться недостаточно для того, чтобы правильно определить место объекта в иерархической схеме классификации. В этом случае нам остается уповать на тот метод, который Кленси назвал эвристической классификацией. Суть его состоит в установлении неиерархических ассоциативных связей между данными и категориями классификации, которое требует выполнения промежуточных логических заключений, включающих, возможно, и концепции из другой таксономии. На рис. 11.3 показаны три основных этапа выполнения эвристической классификации: абстрагирование от данных, сопоставление абстрактных категорий данных с абстрактными категориями решений (утолщенная стрелка) и конкретизация решения. Рассмотрим их по очереди.
Рис. 11.3. Структура логических связей при эвристической классификации ([Clancey, 1985]) Абстрагирование от данных. Часто бывает полезно абстрагироваться от данных, характеризующих конкретный случай. Так, при диагностировании заболевания зачастую важ_но не столько то, что у пациента высокая температура (скажем, 39.8°), а то, что она выше нормальной. То есть врач обычно рассуждает в терминах диапазона температур, а не в терминах конкретного ее значения. Эвристическое сопоставление. Выполнить сопоставление первичных данных в конкретном случае и окончательного диагноза довольно трудно. Гораздо легче сопоставить более абстрактные данные и достаточно широкий класс заболеваний. Например, повышенная температура может служить индикатором лихорадки, наводящей на мысль о инфекционном заражении. Данные "включают" гипотезы, но на относительно высоком уровне абстракции. Такой процесс сопоставления имеет ярко выраженный эвристический характер, поскольку соответствие между данными и гипотезами на любом уровне не бывает однозначным и из общего правила может быть множество исключений. Анализ данных, которые "вписываются" в определенную абстрактную категорию, просто позволяет отбирать решения, лучше согласующиеся с абстрактами решений. Конкретизация решений. После того как определена абстрактная категория, которая сужает пространство решений, нужно определить в этом пространстве конкретные решения-кандидаты и каким-то образом их ранжировать. Это может потребовать дальнейших размышлений, в которые включаются уже количественные параметры данных, или даже сбора дополнительной информации. В любом случае целью этой процедуры является отбор "соревнующихся" гипотез в пространстве решений и последующее их ранжирование — сортировка по степени правдоподобия. Кленси различает три варианта построения абстрактных категорий данных. Определительный. В этом варианте в первую очередь рассматриваются характерные признаки класса объектов, и он во многом напоминает таксономический подход в ботанике и зоологии. Количественный. В этом варианте абстрагирование выполняется исходя из количественных характеристик, как это было сделано в упоминавшемся выше примере с температурой пациента. Обобщение. Этот вариант основывается на иерархии характерных свойств. Например, пациенты, обладающие подавленной иммунной активностью, в более общем смысле могут рассматриваться как потенциальные носители инфекции. На рис. 11.4 представлена эвристическая классификация в контексте программы медицинской диагностики MYCIN, которую мы обсуждали в главе 3. Исходными являются данные анализа крови пациента (количество лейкоцитов). Сначала выполняется количественное абстрагирование от конкретного значения этого показателя, который оценивается как низкий, что, в свою очередь, является характерным признаком лейкопении (здесь мы имеем дело с определительным вариантом абстрагирования). Обобщение лейкопении — подавленная иммунная активность, а обобщение последней— повышенная склонность к переносу инфекции (т.е. такие пациенты более подвержены воздействию различных микроорганизмов). Повышенная склонность к переносу инфекции является уже родовой категорией и наводит на мысль о наличии инфекции, вызванной грамотрицательными микроорганизмами (т.е. инфекции, связанной с определенным классом бактерий). Затем это родовое решение конкретизируется и предполагается, что источником инфекции являются бактерии E.Coli. В системе MYCIN сопоставление данных и абстрактных категорий решений выполняется с помощью порождающих правил, а эвристическая природа такого сопоставления выражается коэффициентами уверенности. Эти коэффициенты можно рассматривать как заложенную в порождающее правило меру "строгости" соответствия между предпосылкой и выводом. Другие правила затем будут уточнять выполненное сопоставление и таким образом "подстраивать" коэффициент уверенности
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 254; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.7.116 (0.008 с.) |