ТОП 10:

Разделение видов узлов и когнитивная экономия



Два аспекта модели памяти, предложенной Квиллианом, оказали особенно существенное влияние на последующее развитие исследований в области применения систем семантических сетей.

Во-первых, он ввел разделение между видами узлов, представляющих концепты. Один вид узлов он назвал узлами-типами. Такой узел представляет концепт, связанный с конфигурацией других узлов, узлов-лексем. Конфигурация узлов-лексем образует определение концепта узла-типа. Это в определенной степени напоминает толковый словарь, в котором каждое понятие (элемент словаря) определяется другими понятиями, также присутствующими в этом словаре, причем их смысл толкуется с помощью еще каких-либо понятий в этом словаре. Таким образом, смысл узла-лексемы определяется ссылкой на соответствующие узлы-типы.

Например, можно определить смысл слова "машина" как конструкцию из связанных компонентов, которые передают усилие для выполнения некоторой работы. Это потребует присоединения узла-типа для слова "машина" к узлам-лексемам, представляющим слова "конструкция", "компонент" и т.д. Однако в дополнение к связям, сформированным для определения смысла, могут существовать и связи к другим узлам-лексемам, например "телетайп" или "офис". Эти связи представляют знание о том, что телетайпы являются одним из видов машин, которые используется в офисе.

Другое интересное свойство модели памяти получило наименование когнитивной экономии. Суть его поясним на примере. Если известно, что машина — это конструкция, состоящая из взаимодействующих деталей, а телетайп — это тоже машина, то можно сделать вывод, что телетайп — это тоже конструкция. Таким образом, нет смысла в явном виде хранить эту информацию, присоединяя ее к узлу "телетайп". Указывая, что этот узел сохраняет определенные свойства, заданные связями узла "машина", мы можем сэкономить память и сохранить при этом возможность извлечь всю необходимую информацию, если только будем способны построить правильную схему влияния одних узлов на другие.

Эта схема, которую в настоящее время принято называть схемой наследования свойств, получила широкое распространение в представлении знаний. Наследование свойств является типичным примером сохранения объема памяти за счет снижения производительности, которое должен учитывать разработчик схемы представления знаний. Мы увидим в дальнейшем, что такой подход влечет за собой появление множества нетривиальных проблем, в частности, если допустить возможность исключений в наследовании, т.е. существование таких узлов-лексем, которые не наследуют все свойства своего узла-типа. Кроме того, хотя смысл понятий полностью определен в пределах сети, но для каждого отдельного понятия он "размазывается", т.е. отдельные части определения связываются с разными узлами. В нашем примере определение понятия "телетайп" только частично хранится в соответствующем узле, а остальная часть определения находится в узле "машина".

Таким образом, помимо антагонизма "объем памяти/производительность", появляется еще и антагонизм между модульностью определения и разумностью этого определения с точки зрения пользователя. Тем не менее, если эта идея будет корректно реализована, программа всегда будет знать, как отыскать отдельные части определения некоторой сущности и собрать их воедино. Главное же преимущество состоит в том, что в узле можно хранить произвольное количество семантической информации, например данные о диапазонах значений свойств, которыми могут обладать узлы-лексемы определенного типа. В чистом виде такая организация памяти не практикуется при использовании формализмов вроде продукционных систем, поскольку придется выполнять трудоемкий анализ целостности информации в рабочей памяти либо с привлечением специальных правил, описывающих такую целостность, либо с помощью самих правил поиска решений. В любом случае это потребует значительных вычислительных ресурсов.

Анализ адекватности ассоциативных сетей

Основную операцию извлечения информации в той модели обработки, которая следует из предложенной Квиллианом модели памяти, можно охарактеризовать как распространяющуюся активность. Идея состоит в том, что если желательно знать, является ли телетайп машиной, то необходимо искать, т.е. распространить "активность" некоторого вида во всех направлениях — как от узла-типа " телетайп", так и от узла-типа "машина". Если где-то эти две волны встретятся, то таким образом будет установлено существование связи между этими двумя концептами, т.е. определен путь на графе от одного узла к другому. Такая распространяющаяся в разных направлениях активность реализуется передачей маркеров вдоль именованных связей. Мы еще раз вернемся к этой, на первый взгляд, простой, но довольно продуктивной идее при обсуждении нейронных сетей в главе 23.

Интересно отметить, что идеи Квиллиана не получили широкого распространения в качестве модели психологической организации и функционирования памяти человека. При проверке адекватности этой модели Коллинс и Квиллиан измеряли время, которое требовалось испытуемым для ответа на вопрос о принадлежности определенного понятия к некоторой категории и о его свойствах [Collins and Quillian, 1969]. Оказалось, что время, затрачиваемое на поиск ответа, действительно увеличивается по мере увеличения количества узлов в сети, описывающей связи между понятиями. Однако такая зависимость имела место только в отношении положительных ответов. Существовали определенные подозрения, что применение предложенной модели для случая отрицательных ответов натолкнется на определенные трудности. И последующие эксперименты, проведенные другими исследователями, эти подозрения подтвердили.

Тем не менее Квиллиан продолжал исследование возможности использования формализма сетей для представления знаний. Хотя современное представление об ассоциативных сетях во многом существенно отличается от первоначальной концепции и область их использования включает множество проблем, отличных от понимания смысла предложений естественного языка, многие базовые принципы унаследованы от пионерских работ Квиллиана, упомянутых выше.

Существует довольно обширный перечень проблем, при решении которых представление, базирующееся на формализме ассоциативных сетей, оказывается весьма полезным. В 1970-х годах было опубликовано множество работ, в которых анализировались различные виды такого формализма. Наиболее удачной из них, на наш взгляд, является работа Вудса [Woods, 1975]. Использование узлов и связей в сети для представления понятий и отношений между ними может показаться само собой разумеющимся, но опыт показал, что на этом пути неосторожного путника поджидает множество ловушек.

В различных вариантах спецификаций структуры сети далеко не всегда четко определяется смысл маркировки узлов. Так, если рассмотреть узел-тип, имеющий маркировку "телетайп", то часто бывает непонятно, представляет ли этот узел понятие "телетайп", или класс всех агрегатов типа "телетайп", или какой-либо конкретный телетайп. Аналогично, и узел-лексема также открыт для множества толкований — определенный телетайп, какой-то телетайп, произвольные телетайпы и т.д. Разные толкования влекут за собой и разный характер влияния этого узла на другие в сети, а это играет весьма важную роль в дальнейшем анализе.

Поиск пересечения неизбежно "тянет за собой" проблему преодоления комбинаторного взрыва, о которой шла речь в главе 2. Поэтому создается впечатление, что организация памяти в терминах множества узлов, для которых в качестве главного вида процесса извлечения используется распространяющаяся по всем направлениям активность, приведет к образованию системы с труднопредсказуемым поведением. Например, весьма вероятно, что при отрицательных ответах на запросы придется выполнить огромное количество элементарных действий, поскольку нужно убедиться, что не существует пересекающихся путей на графе сети между двумя заданными узлами.







Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.95.131.208 (0.005 с.)