Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Производная, ее геометрический и механический смысл. Касательная и нормаль к плоскости кривой. Дифференцируемость функций.

Поиск

Производная. Рассмотрим некоторую функцию y = f (x) в двух точках x 0 и x 0 + : f (x 0) и f (x 0 + ). Здесь через обозначено некоторое малое изменение аргумента, называемое приращением аргумента; соответственно разность между двумя значениями функции: f (x 0 + ) f (x 0) называется приращением функции. Производной функции y = f (x) в точке x 0называется предел:


Если этот предел существует, то функция f (x) называется дифференцируемой в точке x 0 . Производная функции f (x) обозначается так:

Геометрический смысл производной. Рассмотрим график функции y = f (x):


Из рис.1 видно, что для любых двух точек A и B графика функции:


где - угол наклона секущей AB.

Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точку B, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.

Уравнение касательной. Выведем уравнение касательной к графику функции в точке A (x 0, f (x 0)). В общем случае уравнение прямой с угловым коэффициентом f ’(x 0) имеет вид:

y = f ’(x 0) · x + b.

Чтобы найти b,воспользуемся тем, что касательная проходит через точку A:

f (x 0) = f ’(x 0) · x 0 + b,

отсюда, b = f (x 0) – f ’(x 0) · x 0, и подставляя это выражение вместо b, мы получим уравнение касательной:

y = f (x 0) + f ’(x 0) · (x – x 0).

Механический смысл производной. Рассмотрим простейший случай: движение материальной точки вдоль координатной оси, причём закон движения задан: координата x движущейся точки –известная функция x (t) времени t. В течение интервала времени от t 0 до t 0 + точка перемещается на расстояние: x (t 0 + )  x (t 0) = , а её средняя скорость равна: va =  . При 0 значение средней скорости стремится к определённой величине, которая называется мгновенной скоростью v (t 0) материальной точки в момент времени t 0. Но по определению производной мы имеем:

отсюда, v (t 0) = x’ (t 0), т.e. скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени: a = v’ (t).

Производная суммы, произведения и частного. Гиперболические функции, их свойства и графики.

Производная суммы (разности) функций

Производная суммы (разности) двух дифференцируемых функций равна сумме (разности) производных этих функций:

 

Производная произведения функций.

Пусть u(x) и u(x) - дифференцируемые функции. Тогда произведение функций u(x)v(x) также дифференцируемо и производная произведения двух функций не равна произведению производных этих функций.

Производная частного функций.

Пусть u(x) и u(x) - дифференцируемые функции. Тогда, если v(x) ≠ 0, то производная частного этих функций вычисляется по формуле

 

Гиперболическими синусом, косинусом, тангенсом и котангенсом называются функции:

Областью определения функций shx, chx, thx является вся числовая ось; функция y=cthx не определена в точке х=0. Название гиперболических функций (синус, косинус, …) объясняется тем, что для них справедливы тождества ''похожие'' на тригонометрические:

Свойства

ch(x± y)=chx · chy ± shx · shy, (1)

sh(x± y)=shx · chy± chx · shy, (2)

ch2x–sh2x=1, (3)

ch2x=ch2x+sh2x, (4)

sh2x=2shx · chx. (5)

34. Производные основных элементарных функций (степенных, логарифмических, показательных и гиперболических функций). Производная сложной и обратной функции. Производные тригонометрических функций.

1) Производная логарифмической и показательной функции

Предполагается, что основание a показательной и логарифмической функции больше нуля и не равно единице: a > 0, a ≠ 1. Производная показательной функции y = ax с основанием a определяется формулой

Если a = е, то получаем результат в виде

Производная логарифмической функции y = log a x определяется выражением

Для натурального логарифма y = ln x производная равна

 

2) Производные гиперболических функций

 

Производные гиперболических функций легко находятся, поскольку гиперболические функции являются комбинациями ex и e−x. Например, гиперболические синус и косинус определяются как

Производные этих функций имеют вид

Остальные формулы доказываются аналогично.

3)Производная степенной функции

Если f(x) = xp, где p - действительное число, то

Если показатель степени является отрицательным числом, т.е. f(x) = x−p, то



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 442; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.78.65 (0.007 с.)