Производная, ее геометрический и механический смысл. Касательная и нормаль к плоскости кривой. Дифференцируемость функций.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Производная, ее геометрический и механический смысл. Касательная и нормаль к плоскости кривой. Дифференцируемость функций.



Производная. Рассмотрим некоторую функцию y = f ( x ) в двух точках x0 и x0 + : f ( x0 ) и f (x0 + ). Здесь через обозначено некоторое малое изменение аргумента, называемоеприращением аргумента; соответственно разность между двумя значениями функции: f ( x0 + ) f ( x0) называется приращением функции. Производной функции y = f ( x ) в точке x0называется предел:


Если этот предел существует, то функция f ( x ) называется дифференцируемой в точке x0 . Производная функции f ( x ) обозначается так:

Геометрический смысл производной. Рассмотрим график функции y = f ( x ):


Из рис.1 видно, что для любых двух точек A и B графика функции:


где - угол наклона секущей AB.

Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точку B, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.

Уравнение касательной. Выведем уравнение касательной к графику функции в точке A ( x0 , f ( x0) ). В общем случае уравнение прямой с угловым коэффициентом f ’( x0) имеет вид:

y = f ’( x0) · x + b .

Чтобы найти b,воспользуемся тем, что касательная проходит через точку A:

f ( x0) = f ’( x0) · x0 + b ,

отсюда, b = f ( x0) – f ’( x0) · x0, и подставляя это выражение вместо b, мы получим уравнение касательной:

y = f ( x0) + f ’( x0) · ( x – x0) .

Механический смысл производной. Рассмотрим простейший случай: движение материальной точки вдоль координатной оси, причём закон движения задан: координата x движущейся точки –известная функция x ( t ) времени t. В течение интервала времени от t0 до t0 + точка перемещается на расстояние: x ( t0 + ) x ( t0 ) = , а её средняя скорость равна:va =  .При 0 значение средней скорости стремится к определённой величине, которая называетсямгновенной скоростью v ( t0) материальной точки в момент времени t0 . Но по определению производной мы имеем:

отсюда, v ( t0) = x’ ( t0) , т.e. скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени: a = v’ ( t ).

Производная суммы, произведения и частного. Гиперболические функции, их свойства и графики.

Производная суммы (разности) функций

Производная суммы (разности) двух дифференцируемых функций равна сумме (разности) производных этих функций:

 

Производная произведения функций.

Пусть u(x) и u(x) - дифференцируемые функции. Тогда произведение функций u(x)v(x) также дифференцируемо и производная произведения двух функций не равна произведению производных этих функций.

Производная частного функций.

Пусть u(x) и u(x) - дифференцируемые функции. Тогда, если v(x) ≠ 0, то производная частного этих функций вычисляется по формуле

 

Гиперболическими синусом, косинусом, тангенсом и котангенсом называются функции :

Областью определения функций shx , chx , thx является вся числовая ось; функция y=cthx не определена в точке х=0. Название гиперболических функций (синус, косинус, …) объясняется тем, что для них справедливы тождества ''похожие'' на тригонометрические:

Свойства

ch(x± y)=chx · chy ± shx · shy , (1)

sh(x± y)=shx · chy± chx · shy , (2)

ch2x–sh2x=1 , (3)

ch2x=ch2x+sh2x , (4)

sh2x=2shx · chx . (5)

34. Производные основных элементарных функций (степенных, логарифмических, показательных и гиперболических функций). Производная сложной и обратной функции. Производные тригонометрических функций.

1) Производная логарифмической и показательной функции

Предполагается, что основание a показательной и логарифмической функции больше нуля и не равно единице: a > 0, a ≠ 1. Производная показательной функции y = ax с основанием a определяется формулой

Если a = е, то получаем результат в виде

Производная логарифмической функции y = loga x определяется выражением

Для натурального логарифма y = ln x производная равна

 

2) Производные гиперболических функций

 

Производные гиперболических функций легко находятся, поскольку гиперболические функции являются комбинациями ex и e−x. Например, гиперболические синус и косинус определяются как

Производные этих функций имеют вид

Остальные формулы доказываются аналогично .

3)Производная степенной функции

Если f(x) = xp, где p - действительное число, то

Если показатель степени является отрицательным числом, т.е. f(x) = x−p, то



Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.122.9 (0.012 с.)