Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Метод Ньютона (касательных).↑ ⇐ ПредыдущаяСтр 4 из 4 Содержание книги
Поиск на нашем сайте
Пусть на отрезке [a,b] функция f(x) непрерывна и принимает на концах отрезка значения разных знаков, а производные f ′(x) и f ″(x) сохраняют постоянный знак на интервале (a,b). Геометрический смысл метода касательных состоит в том, что дуга кривой y = f(x) заменяется касательной к этой кривой. Рис.7. Иллюстрация метода касательных.
Выберем в качестве начального приближения х0 = a и проведём в точке А0(a,f(a)) касательную к графику функции f(x). Абсцисса пересечения касательной с осью Ох (у = 0) является первым приближением к корню (рси.7): или х0 = . Через точку А1(х1;f(x1)) снова проведём касательную, абсцисса точки пересечения которой даст второе приближение х2 корня ξ и т.д. Очевидно, что в точке Аn(xn;f(xn)): y − f(xn) = f ′(xn)(x−xn) и алгоритм метода Ньютона запишется так:
(4) Заметим, что в нашем случае, если положить х0 = b и провести касательную к кривой у = f(x) в точке b, то первое приближение не принадлежит отрезку [a,b].
Таким образом, в качестве начального приближения х0 выбирается тот конец интервала [a,b], для которого знаки f(x) и f ″(x) одинаковы.
Условие окончания вычислений:
│сn+1 − cn│< ε или │f(cn)│< ε1.
Для оценки погрешности можно пользоваться общей формулой , где
Комбинированный метод (хорд и касательных). Методы хорд и касательных дают приближения корня с разных сторон. Поэтому их часто применяют в сочетании друг с другом, и уточнение корня происходит быстрее. Пусть дано уравнение f(x)=0, корень ξ отделён и находится на отрезке [a,b]. Применим комбинированный метод хорд и касательных с учётом типа графика функции (рис.4). Если f (x)·f ″(x) < 0 (рис.4 в, г), то методом хорд получаем значение корня с избытком, а методом касательных – с недостатком. Если f (x)·f ″(x) > 0 (рис.4 а, б), то метод хорд даёт приближение корня с недостатком, а метод касательных – с избытком. Рассмотрим случай, когда f (b) < 0, f ″(x) > 0 (рис.8), то со стороны конца а лежат приближённые значения корня, полученные по методу касательных, а со стороны конца b – значения, полученные по методу хорд. Рис.8 Иллюстрация комбинированного метода. Тогда , . Теперь истинный корень ξ находится на интервале [a1,b1]. Применяя к этому интервалу комбинированный метод, получаем , и вообще , . (5) Для случая, когда f (b)·f ″(x) > 0, то рассуждая аналогично, получим следующие формулы для уточнения корня уравнения: , . (6) Комбинированный метод очень удобен при оценке погрешности вычислений. Процесс вычислений прекращается, как только станет выполняться неравенство |bn+1–an+1| < ε. Корень уравнения есть среднее арифметическое последних полученных значений: ξ=(an+1+bn+1)/2 Лекция 5. Приближённое решение обыкновенных дифференциальных уравнений и систем обыкновенных дифференциальных уравнений. Пусть функция у = f(x,y) отражает количественную сторону некоторого явления. Рассматривая это явление, мы можем установить характер зависимости между величинами х и у, а также производными от у по х, т.е. написать дифференциальное уравнение. Определение: Обыкновенным дифференциальным уравнением называется уравнение, связывающее независимую переменную х, искомую функцию y=f(x) и её производные. Запись: F(x, y, y′, y′′,…, y(n)) = 0 или . Определение: Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение. у′-2ху3+5=0----- уравнение первого порядка, у″+ky′-by-sinx=0------ уравнение второго порядка. Задача Коши (для уравнения первого порядка): у′ = f(x, y) (1) найти решение y = y(x), удовлетворяющее начальному условию: у(х0)=у0. (1*). Т.е. найти интегральную кривую, проходящую через точку М(х0, у0). Если f(x,y) непрерывна в области R: |x-x0| < a, |y-y0| < b, то существует по меньшей мере одно решение у = у(х), определённое в некоторой окрестности: |х-х0| < h, где h ― положительное число. Это решение единственно, если в R выполнено условие Липшица: (2) Где N― постоянная (константа Липшица), зависящая в общем случае от a и b. Если f(x,y) имеет ограниченную производную в R, то можно положить: Для дифференциального уравнения n-го порядка: у(n)=f(x,y,y′,…,y(n-1)) задача Коши состоит в нахождении решения у = у(х), удовлетворяющего начальным условиям: у(х0) = у0, у′(х0) = у′0, …, у(n-1)(x0) = y(n-1)0 ― заданные числа. Функция у = f(x, C1, C2,…, Cn), где С1,…, Сn― произвольные постоянные, называется общим решением ОДУ или общим интегралом. Эти постоянные можно определить с помощью начальных условий. Решение ДУ при заданных начальных условиях называется его частным решением. Определение: задача называется краевой, если указывается интервал интегрирования [a,b] и ставятся дополнительные условия для значений функции у и её производных на концах этого интервала.
Процесс познания закономерностей и стремление создать детальную картину исследуемых явлений приводит к более сложной количественной оценке, отражающей эти явления, а именно к функции многих переменных, зависящих как от пространственных координат, так и от времени u = f(x1, x2,…, xn, t). Определение: Дифференциальным уравнением с частными производными называется уравнение, связывающее независимую переменные х1, х2, …, хn, t, искомую функцию u = f (х1, х2, …, хn, t) и её частные производные: . Постановка задачи. Дано дифференциальное уравнение первого порядка: у′ = f(x,y) (1). Требуется найти решение этого уравнения на отрезке [x0, xmax], удовлетворяющее начальным условиям: у(х0) = у0 (2). В вычислительной практике более предпочтительным являются численные методы нахождения приближённого решения в фиксированных точках: х0<x1<…<xn=xmax. Большинство численных методов решения задачи (1) с начальными условиями (2) можно привести к виду: (3).
― при r = 1, а1 = 1, b0 = 0 методы вида (3) называются одношаговыми (чтобы найти yi+1 требуется информация только о предыдущей точке (xi, yi)). ― при r > 1 и b0 = 0 ― явными многошаговыми. ― при r > 1 и b0 ≠ 0 ― неявными многошаговыми. Многошаговость нарушает однородность вычислительного процесса, используя для получения недостающей информации другие вычислительные схемы (например, одношаговые). А) Метод Эйлера.
Для решение Д.У.(1) с Н.У. (2) на отрезке [x0, xmax] по методу Эйлера, таблица приближённых значений у(х) для равноотстоящих узлов:
строится по формулам: yk+1 = yk + h∙f(xk,yk) xk+1 = xk + h, k = 0,…,n-1, h=(xn-x0)/n (4)
Абсолютная погрешность формулы (4) на каждом шаге имеет порядок h2 (5) Формула (4) означает, что на отрезке [xk, xk+1] интегральная кривая y = y(x) приближённо заменяется прямолинейным отрезком, выходящим из точки М(хk;уk) с угловым коэффициентом f(хk;уk). В качестве приближения искомой интегральной кривой получаем ломаную линию с вершинами в точках М0(х0;у0), М1(х1;у1),…, Мn(хn;уn). Первое звено касается истинной интегральной кривой в точке М0(х0;у0).
Метод Эйлера может быть применён к решению системы ОДУ и ДУ высших порядков. Последние должны быть предварительно приведены к системе ОДУ первого порядка. Пусть задана система ОДУ первого порядка: (6) с начальными условиями: у(х0) = у0, z(х0) = z0 (7)
Приближённые значения у(хi) ≈ yi, z(хi) ≈ zi вычисляются по формулам: (8)
Метод Эйлера обладает двумя существенными недостатками: 1) малой точностью (метод первого порядка точности); 2) систематическое накопление ошибок. В) Модификации метода Эйлера. 1ый усовершенствованный метод Эйлера.
Сначала вычисляют промежуточные значения: (9)
А затем полагают: (10)
2oй усовершенствованный метод Эйлера.
Сначала определяют «грубые приближения»: (11)
И приближённо полагают: (12)
Локальная погрешность на i-ом шаге: . Оценка погрешности в точке хn может быть получена с помощью двойного просчёта (с шагом h и h/2): (13) С.) Метод Рунге-Кутта. (4го порядка)
Наиболее знаменитым из методов Рунге-Кутта является классический метод 4го порядка (14)
(15) Грубая оценка погрешности (двойной просчёт): (16) Где у(хi) – точное решение, у*i – приближённое решение с шагом h/2, yi – … с шагом h. Для оценки правильности выбора шага h используют равенство: (17) q должно равняться нескольким сотым, иначе h уменьшается. Многошаговые методы. ( используют информацию о нескольких предыдущих точках) Д ) Алгоритм Адамса.
Пусть дано дифференциальное уравнение: у′ = f(x, y) (1) с начальными условиями: у(х0) = у0 (1*) Требуется найти решение уравнения (1) на отрезке [a,b]. Разобьём отрезок [a,b] на n равных частей точками хi = х0 + ih (i =0, 1, …, n). 1ый этап: стартовая процедура. Используют какой-либо одношаговый метод того же порядка точности до тех пор, пока не будет получено достаточно значений для работы многошагового метода. Следовательно, определены: у1, у2, …, уk-1 в точках: х0 + h, …, x0 + h(k-1). 2ойэтап: рекурсивной процедуры. Определение: уk, yk+1,…, yn основано на интегрировании интерполяционного многочлена Ньютона. Рабочие формулы явных методов Адамса (2-го, 3-го, 4-го порядков). (2) (3) (4) Формулы (2)-(4) называются экстраполяционными и на практике используются в качестве прогноза.
Для улучшения точности или коррекции результата применяют неявные методы (используют ещё ненайденные значения: уk+1, yk+2,…). (5) (6) (7) Формулы (5)-(7) называются интерполяционными. Для грубой оценки точности (двойной просчёт):
|
||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 262; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.82.182 (0.006 с.) |