Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Интегрирование по методу Симпсона.Содержание книги
Поиск на нашем сайте
Пусть n = 2m − чётное число, а уi = f(xi) (i = 0..n) − значения функции у = f(x) для равноотстоящих точек a = x0, x1, x2, …, xn = b с шагом h =(b-a)/n = (b-a)/2m. На паре участков (рис.3) кривая у = f(x) заменяется параболой у = L(x), коэффициенты которой подобраны так, что она проходит через точки у0, у1, у2. Рис.3 Геометрическая интерпретация интегрирования по методу Симпсона.
Площадь криволинейной трапеции, ограниченной сверху параболой, составит: . Суммируя площади всех криволинейных трапеций, получим:
Где p = 6-p, p = 4. Следовательно, формула Симпсона для численного интегрирования имеет вид:
(9)
Остаточный член имеет вид:
(10)
На практике для оценки абсолютной погрешности формулы Симпсона применяют следующие соотношения: 1. , (11) При этом, как правило, получают для завышенную оценку. 2. Правило Рунге (n − чётное) даёт более тонкую оценку : (12) Но при этом может получиться для заниженная оценка, чего следует опасаться.
Формулы прямоугольников и трапеций дают точное значение интеграла, когда подынтегральная функция f(x) линейна, ибо тогда f ″(x) = 0, а формула Симпсона является точной для многочленов до третьей степени, т. к. в этом случае f (4) = 0. Если функция у = f(x) задана таблично и её производные найти затруднительно, то в предполо- жении отсутствия быстро колеблющихся составляющих можно применить приближённые формулы для погрешностей, выраженные через конечные разности: (*)
(**) Выбор шага
1. Пусть требуется вычислить интеграл с точностью ε. Используя формулу соответствующего остаточного члена R, выбирают h таким образом, чтобы выполнялось неравенство . 2. Двойной пересчёт. (Правило Рунге).
Лекция 4 ЧИСЛЕННОЕ РЕШЕНИЕ ТРАНСЦЕНДЕНТНЫХ И НЕЛИНЕЙНЫХ УРАВНЕНИЙ.
Если алгебраическое или трансцендентное уравнение достаточно сложное, то его корни сравнительно редко удаётся найти точно. Поэтому большое значение приобретают способы приближённого нахождения корней уравнения и оценки степени их точности. Процесс нахождения приближённых значений корней уравнения: f(x) = 0, (1) где функция f(x) определена и непрерывна в некотором конечном или бесконечном интервале a < x < b разбивается на два этапа: 1) отделение корней; 2) уточнение корней до заданной степени точности.
Отделение корней.
Всякое значение λ, обращающее функцию f(x) в нуль, т. е. такое, что f(λ) = 0, называется корнем уравнения (1) или нулём функции f(x). Отделить корни − это значит разбить всю область допустимых значений на отрезки, в каждом из которых содержится один корень. Отделение корней можно произвести двумя способами − графическим и аналитическим.
Графический метод отделения корней: a) строят график функции у = f(x) для уравнения вида f(x) = 0. Значения действительных корней уравнения являются абсциссы точек пересечения графика функции у = f(x) с осью Ох (рис.1); b) представляют уравнение (1) в виде φ(х) = g(x) и строят графики функций у = φ(х) и у = g(x). Значения действительных корней уравнения являются абсциссы точек пересечения графиков функций у = φ(х) и у = g(x) (рис.2). Отрезки, в которых заключено только по одному корню, легко находятся.
Рис.1. Рис.2. Аналитический метод отделения корней основан на следующей теореме: если непрерывная на отрезке функция принимает на концах отрезка значения разных знаков, т.е. , то внутри этого отрезка находится хотя бы один корень уравнения ; если при этом производная сохраняет знак внутри отрезка , то корень является единственным.
Уточнение корней до заданной точности. То есть сужение отрезка локализации корня [a,b]. Рассмотрим несколько методов. Метод половинного деления (дихотомии).
Пусть корень отделён и принадлежит отрезку . Находим середину отрезка по формуле (рис.3). Если , то с – искомый корень.
Рис. 3.
Рис.3
Вычисляем , выбираем отрезок и т.д. Как только будет выполнено , то в качестве приближенного значения корня, вычисленного с точностью , можно взять . После каждой итерации отрезок, на котором расположен корень уменьшается вдвое, то есть после n итераций он сокращается в 2n раз. Таким образом, число итераций n в данном методе зависит от предварительно заданной точности ε и от длины исходного отрезка и не зависит от вида функции f(x). Это является важным преимуществом метода половинного деления по сравнению с другими методами. Метод, однако, медленно сходится при задании высокой точности расчёта.
Метод хорд. Пусть на отрезке [a,b] функция f(x) непрерывна и принимает на концах отрезка значения разных знаков, а производные f ′(x) и f ″(x) сохраняют постоянный знак на интервале (a,b). Тогда возможны четыре случая расположения дуги кривой (рис.4).
В методе хорд за очередное приближение берём точку пересечения с осью Х прямой (рис.5), соединяющей точки (a,f(a)) и (b,f(b)) Причём одна из этих точек фиксируется − та, для которой знаки f(x) и f ″(x) одинаковы. Для рис.5 неподвижным концом хорды является х =a. Уравнение хорды АВ: Точка пересечения хорды с осью Х (у=0): .
Теперь корень находится на отрезке [a,c1]. Заменяем b на с1.
Рис.5. Иллюстрация метода хорд.
Применяя метод хорд к этому отрезку, получим: . Продолжим и т.д., получим: (2) Условие окончания вычислений: │сn+1 − cn│< ε или │f(cn)│< ε1. Для оценки погрешности можно пользоваться общей формулой: , где
Итак, если f (x)∙f″(x) > 0, то приближённое значение корня находят по формуле (2), если f(x)∙f″(x) < 0 (т.е. фиксируется х = b), то по формуле:
. (3)
|
||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 304; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.129.241 (0.009 с.) |