Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Эллипс. Вывод канонического уровнения эллипса, его характеристики.Содержание книги
Поиск на нашем сайте
- Элипс. Определение. Эллипсом называется ГМТ плоскости сумма расстояний которых до двух фиксированных точек плоскости, называемых фокусами, есть величина постоянная. Определение. Расстояние от произвольной точки М плоскости до фокуса эллипса называется фокальным радиусом точки М. - Каноническое уравнение эллипса. Теорема. В канонической для эллипса системе координат уравнение эллипса имеет вид: Для определённости положим, что В этом случае величины и — соответственно, большая и малая полуоси эллипса. Зная полуоси эллипса можно вычислить его фокальное расстояние и эксцентриситет: Координаты фокусов эллипса: Эллипс имеет две директрисы, уравнения которых можно записать как Фокальный параметр (т.е. половина длины хорды, проходящей через фокус и перпендикулярной оси эллипса) равен Фокальные радиусы, т. е. расстояния от фокусов до произвольной точки кривой Уравнение диаметра, сопряжённого хордам с угловым коэффициентом : Уравнение касательной к эллипсу в точке имеет вид Условие касания прямой и эллипса записывается в виде соотношения Уравнение касательных, проходящих через точку Уравнение касательных, имеющих данный угловой коэффициент : Уравнение нормали в точке - Характеристики Форма эллипса зависит от отношения b/a. При b=a эллипс превращается в окружность, уравнение эллипса (11.7) принимает вид x2+y2=a2. В качестве характеристики формы эллипса чаще пользуются отношением . Отношение половины расстояния между фокусами к большой полуоси эллипса называется эксцентриситетом эллипса и o6oзначается буквой ε («эпсилон»): (11.8) причем 0<ε< 1, так как 0<с<а. С учетом равенства (11.6) формулу (11.8) можно переписать в виде Отсюда видно, что чем меньше эксцентриситет эллипса, тем эллипс будет менее сплющенным; если положить ε = 0, то эллипс превращается в окружность. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Прямая L: Пусть φ – угол между плоскостью и прямой. Тогда θ – угол между и . Найдем , если , т.к. Расстояние от точки до плоскости. Дано: M0 (x0;y0;z0) Расстояние d от точки М0 до плоскости ∆ равно модулю проекции вектора (где М1(x1;y1;z1) - произвольная точка плоскости) на направление нормального вектора !!!Если плоскость задана уравнением: то расстояние до плоскости находится по формуле:
Прямая на плоскости. Виды уравнений прямой на плоскости. Угол между двумя прямыми. Уравнение с угловым коэффициентом. k= tg α – угловой коэффициент. Если b=0 то прямая проходит через начало координат. Уравнение примет вид Если α=0, то k = tg α = 0. То прямая пройдет параллельно оси ох. Если α=π/2, то уравнение теряет смысл. В этом случае уравнение примет вид и пройдет параллельно оси оу. Общее уравнение прямой. A, B, C – произвольные числа, причем А и В не равны нулю одновременно. · Если В=0, то уравнение имеет вид или . Это уравнение прямой, параллельной оси оу. и проходящей через точку · Если В≠0, то получаем уравнение с угловым коэффициентом . · Если А=0, то уравнение имеет вид . Это уравнение прямой, параллельной оси ох. · Если С=0, то уравнение проходит через т. О (0;0). Уравнение прямой, проходящей через точку, в данном направлении. т М (х0;у0). Уравнение прямой записывается в виде . Подставим в это уравнение точку М Решим систему:
Уравнение прямой, проходящей через 2 точки. К (х1;у1) М (х2;у2) Уравнение прямой в отрезках. К (а;0); М (0;b) Подставим точки в уравнение прямой: Уравнение прямой, проходящей через данную точку, перпендикулярно данному вектору. М0 (х0;у0). Возьмем произвольную точку М (х;у). Т.к. , то Нормальное уравнение прямой. Уравнение прямой можно записать в виде: Т.к. ; , то: Угол между прямыми. Дано: прямые L1 и L2 с угловыми коэффициентами Требуется найти угол между прямыми:
Эллипс. Определение. Вывод канонического уравнения. Эллипсом называется геометрическое место всех точек плоскости, сумма расстояний от которых до до фокусов есть величина постоянная, большая, чем расстояние между фокусами. Пусть М (х;у) – произвольная точка эллипса. Т.к. MF1 + MF2 = 2a Т.к. То получаем Или
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 845; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.235.171 (0.006 с.) |