Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Экстремумы функции. Необходимый признак экстремума. Достаточный признак экстремума, использующие первую и вторую производную.Содержание книги
Поиск на нашем сайте
Функция y = f(x) называется возрастающей (убывающей) в некотором интервале, если при x1< x2 выполняется неравенство (f(x1) < f (x2) (f(x1) > f(x2)). Если дифференцируемая функция y = f(x) на отрезке [a, b] возрастает (убывает), то ее производная на этом отрезке f '(x) > 0 (f ' (x) < 0). Точка xо называется точкой локального максимума (минимума) функции f(x), если существует окрестность точки xо, для всех точек которой верно неравенство f(x) ≤ f(xо) (f(x) ≥ f(xо)). Точки максимума и минимума называются точками экстремума, а значения функции в этих точках - ее экстремумами. Необходимые условия экстремума. Если точка xо является точкой экстремума функции f(x), то либо f '(xо) = 0, либо f (xо) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек. Первое достаточное условие. Пусть xо - критическая точка. Если f ' (x) при переходе через точку xо меняет знак плюс на минус, то в точке xо функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке xо экстремума нет. Второе достаточное условие. Пусть функция f(x) имеет производную На отрезке [a,b] функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка [a,b]. Исследование условий и построение графиков. - найти область определения функции - найти точки пересечения графика с осями координат - найти интервалы знака постоянства - исследовать на четность, нечетность - найти асимптоты графика функции - найти интервалы монотонности функции - найти экстремумы функции - найти интервалы выпуклости и точки перегиба Асимптоты графиков функций. Общая схема исследования и построения графиков функции. Примеры. Вертикальная Вертикальная асимптота — прямая вида при условии существования предела . Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например: 1. 2. Замечание: обратите внимание на знаки бесконечностей в этих равенствах. [править]Горизонтальная Горизонтальная асимптота — прямая вида при условии существования предела . [править]Наклонная Наклонная асимптота — прямая вида при условии существования пределов Пример наклонной асимптоты 1. 2. Замечание: функция может иметь не более двух наклонных(горизонтальных) асимптот! Замечание: Если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует! Связь между наклонной и горизонтальной асимптотами Если при вычислении предела , то очевидно, что наклонная асимптота совпадает с горизонтальной. Какова же связь между этими двумя видами асимптот? Дело в том, что горизонтальная асимптота является частным случаем наклонной при , и из выше указанных замечаний следует, что 1. Функция имеет или только одну наклонную асимптоту, или одну вертикальную асимптоту, или одну наклонную и одну вертикальную, или две наклонных, или две вертикальных, либо же вовсе не имеет асимптот. 2. Существование указанных в п. 1.) асимптот напрямую связано с существованием соответствующих пределов. График функции с двумя горизонтальными асимптотами ]Нахождение асимптот Порядок нахождения асимптот 1. Нахождение вертикальных асимптот. 2. Нахождение двух пределов 3. Нахождение двух пределов : если в п. 2.), то , и предел ищется по формуле горизонтальной асимптоты, . [править]Наклонная асимптота — выделение целой части Также наклонную асимптоту можно найти, выделив целую часть. Например: Дана функция . Разделив нацело числитель на знаменатель, получим: . При , , то есть: , и является искомым уравнением асимптоты. [править]Свойства · Среди конических сечений асимптоты имеют только гиперболы. Асимптоты гиперболы как конического сечения параллельны образующим конуса, лежащим в плоскости, проходящей через вершину конуса параллельно секущей плоскости[4]. Максимальный угол между асимптотами гиперболы для данного конуса равен углу раствора конуса и достигается при секущей плоскости, параллельной оси конуса.
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 632; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.189.25 (0.008 с.) |