Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Алгоритм приближенного вычисления корня методом касательных.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Исходные данные: f (x) – функция; f ‘(x) – производная заданной функции f (x); ε – требуемая точность; x0 – начальное приближение. Результат: xпр – приближенный корень уравнения f (x) = 0. Метод решения: Рассмотрим случай, когда , т.е. и имеют одинаковые знаки. Тогда возможны два случая построения кривой на отрезке (рис 8). Проведем касательную к кривой y = f (x) в точке В0(b; f(b)). В курсе алгебры выводится уравнение касательной. Уравнение касательной в точке В0 имеет вид . В качестве очередного приближения к корню уравнения берем точку пересечения касательной с осью Оx. Полагая y = 0, найдем . Теперь . Применяя метод еще раз для отрезка , получим . Получаем рекуррентную формулу вычисления приближений к корню: (3)
Рис. 8. Геометрическая интерпретация метода касательных для случая . Обратим внимание, что в этом случае в качестве начального приближения к корню выбираем точку x0 = b. Приближение к корню происходит с правой стороны, поэтому получаем приближенное значение корня с избытком. Пусть теперь , т.е. и имеют разные знаки. Тогда также возможны два случая построения кривой на отрезке (рис 9). B0
A0
Рис. 9. Геометрическая интерпретация метода касательных для случая . Если снова провести касательную к кривой в точке В0, то она пересечет ось Ох в точке не принадлежащей отрезку . Поэтому проведем касательную в точке . Ее уравнение . Находим x1, полагая y = 0: . Корень . Применяя метод еще раз для отрезка , получим . Получаем рекуррентную формулу вычисления приближений к корню, аналогичную первому случаю: В данном случае в качестве начального приближения к корню выбираем точку x0 = a. Приближение к коню происходит с левой стороны, поэтому находим приближенное значение корня с недостатком. Заметим, что вычислительные формулы метода отличаются друг от друга только выбором начального приближения: в первом случае за x0 принимаем конец b отрезка, во втором – конец a. Убедитесь сами, что при выборе начального приближения корня можно руководствоваться правилом: за исходную точку следует выбрать тот конец отрезка , в котором знак функции совпадает со знаком второй производной (см. рисунки 8,9). Условие окончания вычислительного процесса: , где ε - заданная точность. Тогда xпр = xn+1 с точностью ε. Вопрос 7. Интерполирование и экстраполирование. Интерполяционная формула Лагранжа. Интерполяция, интерполирование —способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений. На отрезке [a, b] заданы n + 1 точки x0, x1,..., xn, которые называются узлами интерполяции, и значения некоторой функции f(x) в этих точках f(x0) = y0, f(x1) = y1,..., f(xn) = yn. Требуется построить интерполирующую функцию F(x), принимающую в узлах интерполяции те же значения, что и f(x), т.е. такую, что F(x0) = y0, F(x1) = y1,..., F(xn) = yn. Геометрически это означает, что нужно найти кривую y = F(x) некоторого определенного типа, проходящую через заданную систему точек Mi(xi, yi) для i = . Полученная таким образом интерполяционная формула y = F(x) обычно используется для вычисления значений исходной функции f(x) для значений аргумента x, отличных от узлов интерполяции. Такая операция называется интерполированием функции f(x). При этом различают интерполирование в узком смысле, когда x принадлежит интервалу [x0, xn], и экстраполирование, когда x не принадлежит этому интервалу. В такой общей постановке задача интерполирования может иметь бесчисленное множество решений. Чтобы получить единственную функцию F(x), необходимо предположить, что эта функция не произвольная, а удовлетворяет некоторым дополнительным условиям. Формула Лагранжа
Интерполяционная формула Лагранжа обеспечивает построение алгебраического многочлена Pn (x) для произвольно заданных узлов интерполирования. Для n + 1 различных значений аргумента x 0, x 1,..., xn и соответствующих значений функции f (x 0) = y 0, f (x 1) = y 1,..., f (xn) = yn интерполяционная формула Лагранжа имеет вид
,
где х - значение аргумента функции, расположенного в интервале [ x 0, xn ]. Необходимо отметить, что формула Лагранжа, в отличие от других интерполяционных формул, содержит явно yi (i = ), что бывает иногда важно. Пример 1. Построить интерполяционный многочлен Лагранжа для функции, заданной следующей таблицей.
Для случая четырех узлов интерполяции (n = 3) многочлен Лагранжа представляется следующим образом:
Заменив переменные xi, yi (i = )их числовыми значениями, получим интерполяционный многочлен
Интерполирование по формуле Лагранжа связано с большим объемом вычислений, значительная часть которых повторяется при получении нескольких значений Pn (x) для одной функции f (x). В том случае, когда формула Лагранжа используется для многократного получения значений одной функции при различных значениях аргумента, можно значительно уменьшить объем вычислений. Для этого формула Лагранжа представляется в виде где - лагранжевы коэффициенты, определяемые как
Вычисление лагранжевых коэффициентов выполняется по следующей схеме, удобной при использовании ЭВМ. Составляется таблица разностей:
Произведение элементов i -й строки обозначается через Ki. Отсюда лагранжевы коэффициенты вычисляются по формуле
где П n +1(x) = (x - x 0)(x - x 1)…(x - xn) - произведение элементов главной диагонали таблицы (эти элементы подчеркнуты). Тогда формула Лагранжапринимает вид:
Использование формулы (2) позволяет сократить значительную часть вычислений по определению лагранжевых коэффициентов Li (n)(x) при различных значениях аргумента. Для этого произведение элементов i -й строки таблицы разностей представляется как Ki = (x – xi) Di, где Di - произведение всех элементов строки, кроме расположенного на главной диагонали. Величина Di (i= )не зависит от значения аргумента x и может быть вычислена для заданной функции только один раз.
|
|||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 851; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.12.95 (0.009 с.) |