Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вопрос 9. Численное интегрирование. Квадратурные формулы прямоугольников, трапеций, формула Симпсона.↑ ⇐ ПредыдущаяСтр 4 из 4 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Задача численного интегрирования состоит в замене исходной подынтегральной функции f(x), для которой трудно или невозможно записать первообразную в аналитике, некоторой аппроксимирующей функцией φ(x). Такой функцией обычно является полином (кусочный полином) . То есть: , где – априорная погрешность метода на интервале интегрирования, а r(x) – априорная погрешность метода на отдельном шаге интегрирования. Заменяя подынтегральную формулу каким-либо интерполяционным многочленом, мы получаем квадратурные формулы вида: , где xk - выбранные узлы интерполяции, Ak - коэффициенты, зависящие только от выбора узлов, но не от вида функций (k = 0,1,..., n), R - остаточный член, или погрешность квадратурной формулы. Отбрасывая остаточный член R, мы совершаем погрешность усечения. При расчете к ней добавляются различные погрешности округления. Разобьём отрезок интегрирования [ a, b ] на n равных частей системой точек , и вычислим подынтегральную функцию в полученных узлах yi = f (xi)(i = 0,1,..., n). Квадратурные формулы для равноотстоящих узлов называются формулами Ньютона-Котеса. Формулы Ньютона-Котеса различаются степенями использованных интерполяционных многочленов. Чтобы не иметь дело с многочленами высоких степеней, обычно разбивают промежуток интегрирования на отдельные участки, применяют формулы Ньютона-Котеса с невысокими степенями на каждом участке и потом складывают полученные результаты. Метод прямоугольников. Различают метод левых, правых и средних прямоугольников. Суть метода ясна из рисунка. На каждом шаге интегрирования функция аппроксимируется полиномом нулевой степени – отрезком, параллельным оси абсцисс. Выведем формулу метода прямоугольников из анализа разложения функции f(x) в ряд Тейлора вблизи некоторой точки x = xi. … Рассмотрим диапазон интегрирования от xi до xi+h, где h – шаг интегрирования. Вычислим …= = = . Получили формулу правых (или левых) прямоугольников и априорную оценку погрешности r на отдельном шаге интегрирования. Основной критерий, по которому судят о точности алгоритма – степень при величине шага в формуле априорной оценки погрешности. В случае равного шага h на всем диапазоне интегрирования общая формула имеет вид . Здесь n – число разбиений интервала интегрирования, . Для справедливости существования этой оценки необходимо существование непрерывной f'(x). Метод средних прямоугольников. Здесь на каждом интервале значение функции считается в точке , то есть . Разложение функции в ряд Тейлора показывает, что в случае средних прямоугольников точность метода существенно выше: . Метод трапеций. Аппроксимация в этом методе осуществляется полиномом первой степени. Суть метода ясна из рисунка. На единичном интервале .
В случае равномерной сетки (h = const) При этом , а . Погрешность метода трапеций в два раза выше, чем у метода средних прямоугольников! Однако на практике найти среднее значение на элементарном интервале можно только у функций, заданных аналитически (а не таблично), поэтому использовать метод средних прямоугольников удается далеко не всегда. В силу разных знаков погрешности в формулах трапеций и средних прямоугольников истинное значение интеграла обычно лежит между двумя этими оценками. Метод Симпсона. Подынтегральная функция f(x) заменяется интерполяционным полиномом второй степени P(x) – параболой, проходящей через три узла, например, как показано на рисунке ((1) – функция, (2) – полином). Рассмотрим два шага интегрирования (h = const = xi+1 – xi), то есть три узла x0, x1, x2, через которые проведем параболу, воспользовавшись уравнением Ньютона:
.
Пусть z = x - x0, тогда
Теперь, воспользовавшись полученным соотношением, сосчитаем интеграл по данному интервалу:
. В итоге .Для равномерной сетки и четного числа шагов n формула Симпсона принимает вид: Здесь , а в предположении непрерывности четвертой производной подынтегральной функции. вид . Формула Симпсона является точной для многочленов до третьей степени включительно. Заметим, что в формуле Симпсона числов узлов обязательно нечетное, то есть n четное, n = 2 m.
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 1373; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.25.226 (0.008 с.) |