ТОП 10:

ПРЕПАРАТ № 4 Центросомы и ахроматиновое веретено митоза



Яйцеклетки лошадиной аскариды

Препарат представляет собой поперечный срез матки. Окрашенный железным гематоксилином (Микрофото 4).

При малом увеличении видно, что стенка матки выстлана эпителиальной тканью, колбообразные клетки которой выступают в ее полость. Эпителий подстилает соединительная ткань, под которой лежат гладкие мышцы. В полости матки множество оплодотворенных яйцеклеток – зигот, окруженной толстой оболочкой, нажодящихся на стадиях митотического деления и образования бластомеров.

При большом увеличении видно, что ядра- пронуклеусы окружены каждый оболочкой. Каждое из них содержит по две хромосомы (гаплоидный набор), который вследствие начавшейся конденсации имеет вид фрагментов тонких нитей. Около ядер иногда заметна центросома, или клеточный центр. Это образование состоит из одной или двух парных центриолей, представляющих собой мелкие, темноокрашенные зернышки.

Обозначения:1 – ядро. 2 – ахроматиновое веретено. 3 – ценнтросомы.

 

ПРЕПАРАТ № 16 Реснички эпителиальных клеток кишечника беззубки

Препарат представляет собой продольный срез кишечника беззубки. Окрашенный железным гематоксилином (Микрофото 16). (рис. 43)

При малом увеличении надо ориентировать препарат так, чтобы эпителиальный пласт, располагающийся по краю среза, имеющий вид темноокрашенной полосы различной ширины, находился в верхней части среза. Под эпителием располагается соединительная ткань. Надо выбрать наиболее светлый участок эпителиального пласта, изучить его строение и зарисовать при большом увеличении. Высокие, цилиндрические эпителиальные клетки располагаются в один слой на базальной мембране, которая имеет вид узкой черной полоски. Обращает на себя внимание выраженная полярная дифференциация клеток. Ядра овальной формы с зернистым хроматином и ядрышком находятся в базальной части клеток и лежат на различном уровне в разных клетках, благодаря чему образуют как бы несколько рядов. Свободная апикальная поверхность клеток обращена в мантийную полость и покрыта тесно расположенными ресничками. В подстилающей эпителий соединительной ткани видны ядра соединительнотканных клеток и межклеточное вещество.

 

 

 

 

Рис. 43. Митохондрии в клетках эпителия кишечника аскариды. 1 – эпителиальные клетки, 2 – базальная мембрана, 3 – клеточные границы, 4 – кутикула, 5 – цитоплазма, 6 – слабоокрашенные ядра, 7 - митохондрии в виде зерен.

 

Обозначения:1 – ядро. 2 – эпителиальные клетки. 3 –базальная мембрана. 4- апикальная мембрана. 5 – реснички.

Задания

1.Изучите немембранные органоиды эукариотической клетки.

 

2. Заполните таблицу «Немембранные органоиды эукариотической клетки». (таблица 13)

 

 

Таблица 13.

Немембранные органоиды эукариотической клетки

Рибосомы
Топография структур (где находятся) Связь с органоидами Клетки Основные Функции
Цитоплазматические    
   
Митохондриальные    
   
Пластидные    
   
Клеточный центр
Таксономическая принадлежность клеток Наличие и локализация в клетке Особенности строения и Функционирования
Клетки многоклеточных Животных    
Клетки Низших эукариот    
Клетки Высших растений    

 

Контрольные вопросы

1. Какие органоиды относятся к немембранным?

2. Чем отличаются рибосомы цитоплазматического матрикса от рибосом, фиксированных на мембранах ЭПС?

3. Какие структуры входят в состав клеточного центра?

4. Какие функции выполняет клеточный центр?

5. Каким образом происходит увеличение числа центриолей в клетке?

6. Какие части входят в состав типичного жгутика эукариот?

7. Какое строение имеют различные части жгутика на поперечном срезе?

8.С какими органоидами клетки связаны жгутики и реснички?

9. Какими особенностями обладают жгутики прокариот?

 

ЗАНЯТИЕ 6

Тема 6. ОДНОМЕМБРАННЫЕ ОРГАНОИДЫ

 

Содержание. Общая характеристика вакуолярной системы клетки. Эндоплазматическая сеть. Гранулярная и агранулярная эндоплазматическая сеть; особенности организации и функционирования. Аппарат Гольджи. Организация и функционирование. Секреторные гранулы. Лизосомы. Типы лизосом; их функции. Автолизосомы. Пероксисомы, глиоксисомы, сферосомы. Особенности химического состава и его связь с функциями. Вакуоли и их производные. Особенности организации одномембранных органоидов в специализированных клетках.

Средства наглядности. Таблицы с изображением одномембранных органоидов. Таблицы с изображением основных этапов биосинтеза белков

Оборудование и материалы. Препараты: мейоз в половых железах кобылки, мейоз в бутонах лука. Таблица с изображением фаз мейоза

Задания для аудиторной работы

1. Законспектируйте теоретическую часть занятия. Обратите внимание на термины, выделенные курсивом.

2. Ответьте на контрольные вопросы.

3. Заполните таблицу «Функции одномембранных органоидов клетки».

Задания для внеаудиторной работы

Завершите изучение основных классов органических и неорганических веществ клетки. Обратите внимание на ферментативные функции белков и функции отдельных элементов.

Теоретическая часть

К одномембранным органоидам относятся: эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы, сферосомы, вакуоли и некоторые другие. Все одномембранные органоиды связаны между собой в функционально-генетическом отношении и образуют единую вакуолярную систему.

У прокариот вакуолярная система, построенная на основе постоянных внутриклеточных мембран, отсутствует. Ее функции выполняют многочисленные впячивания плазмалеммы – мезосомы.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭР) – система цистерн и трубочек, связанных между собой в единое внутриклеточное пространство, отграниченное от остальной части цитоплазмы замкнутой внутриклеточной мембраной. (рис. 44)

Рис. 44. Эндоплазматическая сеть

1 - трубочки гладкой (агранулярной) сети, 2 - цистерны гранулярной сети, 3 - наружная ядерная мембрана, покрытая рибосомами, 4 - поровый комплекс, 5 ~ внутренняя ядер­ная мембрана (по Р. Крстичу, с изменениями).

Основной функцией эндоплазматической сети является биосинтез и транспортировка различных веществ. От цистерн и трубочек эндоплазматического ретикулума отшнуровываются одномембранные мелкие пузырьки, дальнейшая судьба и функции которых зависят от их содержимого.

К. Портер (1945) с помощью электронного микроскопа впервые наблюдал эндоплазматическую сеть как систему мелких вакуолей, соединенных каналами. В ходе дальнейших исследований было установлено, что эндоплазматическая сеть имеется у всех эукариот и существует в виде двух типов: гранулярного (шероховатого) эндоплазматического ретикулума и агранулярного (гладкого) эндоплазматического ретикулума. Мембраны эндоплазматического ретикулума тесно связаны с ядерной оболочкой, система цистерн и трубочек эндоплазматического ретикулума связана с перинуклеарным пространством.

Гранулярный (шероховатый) эндоплазматический ретикулум представлен системой плоских цистерн, на поверхности которых расположены рибосомы. Кроме биосинтеза белков гранулярный ретикулум выполняет функцию сборки компонентов клеточных мембран: и липидного, и белкового компонентов.

Если на полисомах идет синтез клеточных белков, то синтезированные полипептиды поступают в цитоплазматический матрикс или внедряются в мембраны. Если на полисомах идет синтез экспортных белков, то синтезированные полипептиды поступают в полость ретикулума через специальные поры – каналы, контролируемые специфическими белками–рецепторами. В полости гранулярного ретикулума полипептиды модифицируются: отщепляется начало полипептидной цепи, образуются белковые гранулы, полипептиды образуют комплексы с другими веществами и т.д.

Агранулярный (гладкий) эндоплазматический ретикулум представлен системой разветвленных трубочек. В полости агранулярного ретикулума происходит биосинтез липидов и полисахаридов; здесь же происходит накопление ионов кальция. В агранулярном ретикулуме печени происходит детоксикация ядовитых веществ.

Аппарат Гольджи

Аппарат Гольджи (комплекс Гольджи, пластинчатый комплекс) был открыт К. Гольджи в 1898 г. Дальнейшее изучение структуры и функций аппарата Гольджи связано с развитием световой и электронной микроскопии, а также цитохимических методов. (рис. 45)

Рис. 45.Различные формы комплекса Гольджи (по Б. Албертсу и соавт. и по Р. Крстичу, с изменениями).

Основой аппарата Гольджи является диктиосома – стопка уплощенных одномембранных цистерн. Количество диктиосом в клетке может достигать 20. Если диктиосомы расположены независимо друг от друга, то такая структура аппарата Гольджи называется диффузной. Если диктиосомы связаны между собой каналами в единую трехмерную систему, то такая структура называется сетчатой. Возможен переход диффузной структуры в сетчатую и наоборот.

В зоне аппарата Гольджи наблюдается множество мелких вакуолей. Часть вакуолей имеет ретикулярное происхождение, то есть они образуются путем отшнуровывания от эндоплазматического ретикулума. Путем слияния этих вакуолей и образуются цистерны аппарата Гольджи. Другая часть вакуолей (обычно более крупных) образуется путем отшнуровывания от цистерн аппарата Гольджи.

В цистернах аппарата Гольджи происходит завершение модификации экспортных белков. В составе секреторных вакуолей эти белки направляются к плазмалемме и удаляются за пределы клетки путем экзоцитоза. Таким же способом из клетки выводятся полисахариды и липиды. Кроме того, аппарат Гольджи отшнуровывает первичные лизосомы.

Таким образом, функции аппарата Гольджи сводятся к накоплению разнообразных веществ, их модификации и сортировке, упаковке конечных продуктов в одномембранные пузырьки, выведению секреторных вакуолей за пределы клетки и формированию первичных лизосом. У одноклеточных организмов расширенные цистерны аппарата Гольджи образуют сократительные вакуоли. В передней части сперматозоидов расширенная цистерна аппарата Гольджи образует акросому, которая содержит литические ферменты, растворяющие оболочки яйцеклетки.

 

Лизосомы

Лизосомы – одномембранные пузырьки диаметром 0,1 – 0,5 мкм, содержащие гидролитические ферменты (протеазы, нуклеазы, липазы и кислые фосфатазы).

Лизосомы открыл биохимик Де Дюв (1955). Дальнейшее их изучение велось с помощью биохимических и электронно-микроскопических методов.(рис. 46)

 

Рис.46 Схема строения и функционирования лизосом (возможные пути формирования вторичных лизосом путем слияния мишеней с первичными лизосомами, содержащими новосинтезированные гидролитические ферменты)

1 - фагоцитоз, 2 - вторичная лизосома, 3 - фагосома, 4 - остаточное тельце, 5 -мультивезикулярное тельце, 6 - очистка лизосом от мономеров, 7 - пмноцитоз, 8-аутофагосома, 9 - начало аутофагии, 10 ~ участок агранулярной эндоппазматической сети, 11 - гранулярная эндоплазматическая сеть, 12 - протонный насос, 13 - первич­ные лизосомы, 14-комплекс Гольджи, 15- рециклирование мембран, 1 б - плазмалемма, 17-кринофагия; пунктирные стрелки - направления движения, (По К..де Дювуипо Б. Албертсу и соавт., с изменениями).

 

Первичные лизосомы образуются при отшнуровывании от периферической части аппарата Гольджи. Их размеры очень малы (около 0,1 мкм). Затем эти первичные лизосомы сливаются с фагоцитарными или пиноцитозными вакуолями, образуя вторичные лизосомы (пищеварительные вакуоли).

Вторичные лизосомы могут сливаться между собой. Вещества, поглощенные клеткой, подвергаются гидролизу, продукты которого через мембрану вторичной лизосомы поступают в цитоплазматический матрикс.

Лизосома, содержащая непереваренные вещества, превращается в остаточное тельце. Остаточные тельца выводятся из клетки путем экзоцитоза или остаются в ее составе вплоть до гибели клетки.

Первичные лизосомы могут изливать свое содержимое за пределы клетки (при внеклеточном пищеварении) или превращаться в автолизосомы.

Автолизосомы образуются при слиянии первичных лизосом и отработанных внутриклеточных структур: фрагментов эндоплазматической сети, митохондрий, пластид, рибосом, включений и т.д. Автолизосомы выполняют роль внутриклеточных чистильщиков, их количество возрастает при повреждении клеток, при стрессах, при различных генетических и инфекционных заболеваниях.

У некоторых организмов (например, у дрожжей) гигантские лизосомы называются вакуоли.

Секреторные вакуоли

Секреторные вакуоли, или секреторные гранулы – короткоживущие одномембранные пузырьки, которые образуются путем отшнуровывания от периферической части аппарата Гольджи. Секреторные вакуоли содержат разнообразные вещества (неактивные ферменты, или проферменты, полисахариды, липиды), выводимые за пределы клетки путем экзоцитоза. Секреторные вакуоли хорошо видны в специализированных клетках экзокринных желез.

Пероксисомы

Пероксисомы (микротельца) – одномембранные пузырьки диаметром 0,3 – 1,5 мкм, которые образуются путем отшнуровывания от цистерн гранулярной эндоплазматической сети. Пероксисомы заполнены гранулярным матриксом и содержат разнообразные ферменты, например, каталазу, разлагающую пероксид водорода. В ряде случаев пероксисомы содержат и другие системы ферментов.

У проростков некоторых растений встречаются и другие органоиды, содержащие каталазу – глиоксисомы. Глиоксисомы участвуют в липидно-углеводном обмене веществ.

Сферосомы

Сферосомы – одномембранные пузырьки диаметром около 1 мкм, которые образуются путем отшнуровывания от эндоплазматической сети. Сферосомы характерны для клеток растений. Первичная сферосома (просферосома) накапливает липиды, увеличивается в размерах, затем утрачивает мембрану и превращается в масляную каплю.

Кроме липидов в составе сферосом имеются ферменты липазы, контролирующие превращения липидов.

Вакуоли и их производные

Вакуоли – заполненные жидкостью крупные одномембранные полости. Настоящие вакуоли имеются только у растений.

Вакуоли образуются при слиянии мелких пузырьков, отшнуровывающихся от эндоплазматической сети. В ходе функционирования вакуолей в их состав могут включаться пузырьки, отшнуровывающиеся от аппарата Гольджи. Мембрана крупных вакуолей имеет собственное название – тонопласт. Содержимое вакуолей называется клеточным соком, в состав которого входят неорганические соли, растворимые углеводы, органические кислоты, некоторые белки.

Таблица 14







Последнее изменение этой страницы: 2017-02-19; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.227.3.146 (0.009 с.)