Формирование электрохимического градиента 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Формирование электрохимического градиента



 

Все мембранные процессы, связанные с транспортом электронов и протонов, протекают сходным образом.

В клетках существуют кислотные (протонные) резервуары – накопители избытка протонов, отграниченные от остальной цитоплазмы мембранами. Создание протонных резервуаров происходит за счет согласованной работы мембранных и немембранных переносчиков. При создании протонных резервуаров используется энергия электронов, связанных с переносчиками.

При фотосинтезе у цианобактерий и эукариотических растений роль протонного резервуара играет матрикс тилакоидов. При дыхании у эукариот протонным резервуаром служит межмембранный матрикс митохондрий. У прокариот при фотосинтезе и дыхании протонными резервуарами являются одномембранные полости внутри клетки или пространство между плазмалеммой и клеточной стенкой (или дополнительными мембранами).

Перенос электронов и протонов происходит следующим образом. Молекула хинона (мембранный переносчик KoQ) присоединяет два электрона с избытком энергии и превращается в восстановленную форму KoQ 2–. После этого KoQ 2– присоединяет два протона со стороны щелочного резервуара и превращается в форму KoQ ∙2Н. Затем KoQ ∙2Н перемещается к протонному резервуару. Здесь с помощью цитохромов происходит отщепление двух протонов.

Таким образом, протоны переносятся в протонные резервуары с помощью переносчиков против градиента концентрации (из области с низкой концентрацией в область с высокой концентрацией) и против электрического градиента (из области с недостаточным положительным зарядом в область с избыточным положительным зарядом). Хиноны выполняют функцию челноков, перемещающих протоны через мембрану, цитохромы способствуют отщеплению протонов со стороны протонного резервуара, а остальные переносчики выполняют вспомогательные функции.

Источником энергии для переноса протонов через мембрану служат высокоэнергетические (возбужденные) электроны. Энергия электронов постепенно расходуется на транспорт протонов против градиента концентрации. Полностью или частично потерявшие энергию электроны поступают на акцепторы (сильные окислители) и выводятся из электрон-транспортных цепей.

Механизм фосфорилирования. В результате функционирования электрон-транспортных цепей формируется разность концентраций протонов и разность электрических зарядов: внутри протонного резервуара – избыток протонов и избыточный положительный заряд, а за пределами протонного резервуара – недостаток протонов и недостаток положительного заряда. Разность концентраций (ΔС) и разность зарядов (∆φ) совместно образуют электрохимический потенциал. В конце концов, разность зарядов достигает критического значения (∆φ ≈ 200 мВ). Тогда избыток протонов покидает резервуар – выходит во внешнюю среду (в строму хлоропластов, в матрикс митохондрий и т.д.). В мембране имеются каналы, образованные ферментом протон–зависимой АТФазой. При прохождении протонов через канал АТФазы их потенциальная энергия используется для фосфорилирования – присоединения неорганического фосфата к молекуле АДФ.

 

3. Энергетический обмен (дыхание)

Энергетический обмен (катаболизм, или диссимиляция) – это совокупность физиолого-биохимических процессов, протекающих с выделением высокоорганизованной энергии. В результате катаболизма из сложных органических веществ образуются более простые органические и неорганические вещества. Высокоорганизованная энергия аккумулируется в макроэргических соединениях, например, в виде АТФ. Синтез АТФ путем присоединения неорганического фосфата к АДФ называется фосфорилирование.

Наивысший выход энергии при катаболизме дает аэробное дыхание. Дыхание – это последовательность катаболических процессов, в результате которых восстановленные органические соединения переходят в окисленные формы с высвобождением высокоорганизованной энергии (например, с образованием АТФ или подобных веществ).

Универсальным источником энергии при дыхании (субстратом дыхания) во всех клетках служит глюкоза. Процесс полного окисления глюкозы состоит из трех стадий: гликолиз, цикл Кребса, терминальное окисление.

Гликолиз

Гликолиз – это процесс ферментативного негидролитического расщепления глюкозы.

Различают гликолиз как подготовительный этап аэробного дыхания и собственно гликолиз как тип анаэробного брожения. В ходе гликолиза как подготовительного этапа аэробного дыхания из одного моля глюкозы образуется два моля пировиноградной кислоты, два моля АТФ и два моля НАДН∙Н+. При собственно гликолизе (анаэробном брожении) пировиноградная кислота восстанавливается до молочной кислоты.

Гликолиз – довольно сложный процесс, протекающий при участии 13 ферментов. В общих чертах, гликолиз идет по следующей схеме. Молекула глюкозы (С6Н12О6) фосфорилируется, изомеризуется до фруктозы и, в конечном итоге, разлагается на две молекулы фосфоглицеринового альдегида (ФГА). Каждая молекула ФГА окисляется до молекулы фосфоглицериновой кислоты (ФГК). Каждая молекула ФГК окисляется до одной молекулы пировиноградной кислоты (С3Н4О3 – ПВК). В ходе этих превращений образуется 2 молекулы АТФ, а 4 атома водорода используются для восстановления немембранного переносчика НАД+ до НАДНžН+. Общее уравнение гликолиза с образованием ПВК:

С6Н12О6 + 2АДФ + 2Ф + 2НАД+ → 2С3Н4О3 + 2АТФ + 2НАДНžН+

Превращения ПВК в анаэробных (или частично аэробных) условиях называются брожением или анаэробным дыханием. В животных клетках (при дефиците кислорода) и в клетках молочнокислых бактерий протекает молочнокислое брожение: ПВК может забирать атомы водорода от НАДНžН+ и превращаться в молочную кислоту – C3Н6О3 (молочная кислота – это яд, который в клетках печени вновь окисляется до ПВК):

2 C3Н4О3 + 2 НАДНžН+ ® 2 C3Н6О3 + 2 НАД+

Существует множество других видов брожения, при этом конечными продуктами являются органические кислоты и спирты (промежуточные продукты реакций – альдегиды). При спиртовом брожении (например, у дрожжей в анаэробных условиях) протекают следующие реакции: от пировиноградной кислоты отщепляется СО2 и образуется уксусный альдегид; затем с помощью НАД уксусный альдегид окисляется до этилового спирта (этанола). При уксуснокислом брожении (у уксуснокислых бактерий) в частично аэробных условиях этанол окисляется кислородом воздуха до уксусной кислоты.

Цикл Кребса

Цикл Кребса – это последовательность биохимических реакций с участием трикарбоновых кислот. В ходе цикла Кребса пировиноградная кислота (ПВК) расщепляется до углекислого газа и атомов водорода, связанных с немембранными переносчиками НАД и ФАД. При этом окисление двух молей ПВК приводит к образованию двух молей АТФ (ГТФ). У эукариот цикл Кребса протекает в митохондриях.

Предварительно ПВК расщепляется на CО2 и остаток CН3CO (ацетил), который с помощью кофермента А (KoA) образует ацетил- KoA и включается в последующие реакции. В ходе цикла Кребса при расщеплении одного остатка СН3СО до СО2 и атомов водорода образуется один моль АТФ (точнее, ГТФ). В итоге один моль глюкозы в цикле Кребса дает два моля АТФ (ГТФ), поскольку при гликолизе из одного моля глюкозы образуется два моля ПВК.

Терминальное окисление

Терминальное окисление, или окислительное фосфорилирование – это совокупность катаболитических процессов на мембранах митохондрий, завершающихся полным окислением органических веществ с участием молекулярного кислорода. При этом роль протонного резервуара играет межмембранный матрикс – пространство между внешней и внутренней мембранами.

Атомы водорода, отщепившиеся от глюкозы в ходе гликолиза и цикла Кребса, связанные с немембранными переносчиками НАД и ФАД, поступают на внутреннюю мембрану митохондрий. С помощью флавопротеинового комплекса происходит окисление водорода: протоны поступают в матрикс, а электроны переходят на мембранные переносчики. Энергия электронов используется для переноса протонов из матрикса в межмембранный матрикс. Хиноны выполняют роль челноков, перемещающих протоны через мембрану, цитохромы способствуют отщеплению протонов на внешней поверхности внутренней мембраны, а остальные переносчики выполняют вспомогательные функции.

Электроны, потерявшие энергию, поступают на комплекс ферментов под названием цитохромоксидаза. Цитохромоксидаза использует электроны для активации (восстановления) молекулярного кислорода О2 до О22–. Ионы О22– присоединяют протоны, образуя пероксид водорода, который при помощи каталазы разлагается на Н2О и О2. Последовательность описанных реакций можно представить в виде схемы:

2 + 2ē → 2О22–; 2О22– + 4Н+ → 2Н2О2; 2Н2О2 → 2Н2О + О2

В межмембранном матриксе происходит накопление протонов, а электроны, израсходовавшие свою энергию, используются для восстановления кислорода с образованием воды. Внутренняя мембрана митохондрии содержит каналы, образованные ферментом АТФазой. Избыток протонов из межмембранного матрикса переходит через канал АТФазы в матрикс. Энергия электрохимического потенциала служит для синтеза АТФ из АДФ и неорганического фосфата.

Энергетика дыхания. Суммарное уравнение аэробного дыхания (без учета потерь АТФ) обычно записывается следующим образом:

 

С6Н12О6 + 6 О2 + 38 АДФ + 38 Ф → 6 СО2 + 6 Н2О + 38 АТФ + Q

 

Из 38 молекул АТФ, образующихся при полном окислении одной молекулы глюкозы, 2 молекулы образуется в ходе анаэробных реакций гликолиза, 2 молекулы в цикле Кребса и 34 молекулы – при терминальном окислении.

В действительности, на каждом этапе дыхания АТФ не только образуется, но и затрачивается на обслуживание самих обменных процессов. Кроме того, часть синтезированных молекул АТФ используется для транспорта самой АТФ за пределы митохондрий. Поэтому только часть АТФ может использоваться на нужды клетки.

 

4. Пластический обмен (фотосинтез)

Пластический обмен (анаболизм, или ассимиляция) – это совокупность физиолого-биохимических процессов, протекающих с затратой высокоорганизованной энергии. В результате из простых органических и неорганических веществ образуются более сложные вещества. Примером анаболических реакций служит фотосинтез – процесс образования органических веществ с затратой световой энергии.

Бактериальный фотосинтез у пурпурных и зеленых бактерий протекает на мезосомах – впячиваниях плазмалеммы. Главным фотосинтезирующим пигментом у бактерий является бактериохлорофилл. Донорами протонов и электронов являются: сероводород, который окисляется до свободной серы (у аэробных зеленых серобактерий и анаэробных пурпурных серобактерий); водород и органические соединения (у пурпурных несерных бактерий). При бактериальном фотосинтезе в качестве донора электронов никогда не используется вода, и поэтому никогда не выделяется кислород.

Фотосинтез у высших растений протекает в специализированных органоидах – хлоропластах. Источником углерода является углекислый газ, источником электронов и протонов служит вода. Конечными продуктами являются глюкоза и кислород. Реакции фотосинтеза делятся на две группы: световые и темновые.

1. Световые реакции протекают непосредственно под воздействием света на мембранах тилакоидов хлоропластов. В световых реакциях образуются: O2, АТФ и НАДФН-Н+.

2. Темновые реакции протекают в строме хлоропластов как на свету, так и в темноте. Простейшим продуктом темновых реакций является глюкоза.

Световые реакции

Преобразование энергии света в энергию химических связей начинается в реакционных центрах, входящих в состав мембран тилакоидов. В составе реакционных центров обнаруживаются разнообразные сочетания пигментов: хлорофиллы а и b, каротиноиды и другие. Кроме указанных пигментов в мембранах обнаруживаются разнообразные вещества – переносчики электронов и протонов. Основные сочетания пигментов и переносчиков называются фотосистемы: фотосистема I и фотосистема II.

Универсальным способом образования АТФ является механизм нециклического фотофосфорилирования. Энергия света, поглощенная пигментами, преобразуется в энергию электронов. Свободные электроны образуются при фотолизе (фотоокислении) воды – расщеплении молекулы Н2О с затратой световой энергии. При фотолизе воды выделяется молекулярный кислород. Энергия электронов используется для создания протонных резервуаров внутри тилакоидов и формирования электрохимических потенциалов на мембранах тилакоидов. В свою очередь, энергия электрохимического потенциала используется для синтеза АТФ. Электроны, потерявшие энергию, используются для восстановления НАДФ.

В действительности световые реакции протекают более сложно.

Фотосистема II поглощает высокоэнергетические кванты света. Электроны хлорофилла переходят в возбужденное состояние, а затем молекула хлорофилла теряет один возбужденный электрон с избытком энергии. Окисленный хлорофилл отщепляет один электрон от молекулы воды. Вода разлагается на протон Н+ и свободный радикал - ОН. Два радикала - ОН объединяются в молекулу Н2О2, которая разлагается каталазой на Н2О и О2. Процесс расщепления воды под воздействием света называется фотолиз. При фотолизе выделяется молекулярный кислород как побочный продукт световых реакций фотосинтеза:

4 Н2О → 4 Н+ + 4 - ОН + 4 ē; 4 - ОН → 2 Н2О2 → 2 Н2О + О2

Высокоэнергетические электроны от молекул хлорофилла присоединяются к хинонам, образуя восстановленные хиноны (KoQ 2–). Восстановленные хиноны диффундируют на внешнюю сторону мембраны тилакоида (к строме). Здесь к хинонам присоединяются протоны, которые всегда присутствуют в водных растворах вследствие электролитической диссоциации воды. Хиноны вместе с протонами диффундируют на внутреннюю сторону мембраны (к матриксу тилакоида). Под воздействием цитохромов b протоны отщепляются от хинонов и переходят в матрикс тилакоида. Затем хиноны вновь диффундируют к строме, где вновь присоединяют протоны. Таким образом, строма служит источником протонов, а матрикс тилакоидов – протонным резервуаром.

Электроны, частично израсходовавшие энергию на перенос протонов, отщепляются от хинонов и поступают на промежуточный переносчик – цитохром f.

Фотосистема I поглощает низкоэнергетические кванты света. Электроны хлорофилла фотосистемы I переходят в возбужденное состояние, а затем молекула хлорофилла теряет один возбужденный электрон. Потерю электронов молекулы хлорофилла восполняют, забирая электроны от цитохромов f. Электроны от фотосистемы I через промежуточные мембранные переносчики (ферредоксин и другие) используются для восстановления немембранного переносчика электронов и протонов НАДФ: НАДФ+ + 2 ē + 2 Н+ → НАДФН-Н+.

Избыток протонов из матрикса переходит через канал АТФазы в строму. Энергия электрохимического потенциала используется для фотофосфорилирования – синтеза АТФ из АДФ и неорганического фосфата. В итоге энергия света расходуется на синтез АТФ и на восстановление НАДФ.

Темновые реакции

АТФ и НАДФН-Н+, образовавшиеся в ходе световых реакций, используются для восстановления СО2 и образования глюкозы. Образовавшаяся глюкоза превращается в первичный крахмал.

Первичный крахмал в дальнейшем гидролизуется с образованием глюкозы. Эта глюкоза транспортируется за пределы хлоропласта: в остальные клетки и органы растения. Здесь она превращается во вторичный крахмал, используется для дыхания и для биосинтеза кислот, аминокислот и других веществ. Суммарное уравнение фотосинтеза записывается следующим образом:

6 СО2 + 6 Н2О + световая энергия → С6Н12О6 + 6 О2 + тепло

Существует несколько механизмов темновых реакций. Универсальным способом фиксации СО2 является цикл Кальвина:

Пятиуглеродный сахар рибулозодифосфат с помощью РДФ-карбоксилазы присоединяет одну молекулу СО2. Образуется неустойчивое шестиуглеродное соединение, которое разлагается на две молекулы фосфоглицериновой кислоты (ФГК). С помощью АТФ и НАДФН-Н+ каждая молекула ФГК восстанавливается до фосфоглицеринового альдегида (ФГА). Одна шестая часть молекул ФГА в ходе реакций изомеризации и димеризации образуют фруктозу, которая превращается в глюкозу. Большая часть ФГА (5/6) используется на образование рибулозодифосфата.

 

Дополнение 1. Альтернативные пути фотофосфорилирования

Циклическое фотофосфорилирование. Электроны от ферредоксина возвращаются на цитохромы электрон-транспортной цепи. При этом не происходит восстановления НАДФ.

Псевдоциклическое фотофосфорилирование. Электроны из электрон-транспортной цепи с помощью оксидаз присоединяются не к цитохромам, а к молекулярному кислороду на внешней стороне мембраны. При участии протонов образуется Н2О2, которая разлагается на Н2О и О2. В этом случае также не происходит восстановления НАДФ, а выход АТФ снижается.

Дополнение 2. Альтернативные пути фиксации СО2

Обычно все реакции темновой стадии (цикл Кальвина) полностью протекают в строме одного и того же хлоропласта. Однако существуют и другие способы фиксации CО2, Например, у кукурузы, сорго и сахарного тростника в клетках обкладки сосудисто-волокнистых пучков фиксация CО2 протекает с участием четырехуглеродных соединений (цикл Хэтча-Слэйка). У толстянковых (например, очиток едкий) существует особый путь фиксации CО2 (САМ – Си-Эй-Эм – кислый метаболизм толстянковых).

Дополнение 3. Фотодыхание

Фотодыхание. Вместо CО2 с рибулезодифосфатом может взаимодействовать О2. В последующих реакциях принимают участие митохондрии и специализированные органоиды – глиоксисомы. Вместо образования сложных органических веществ происходит окисление рибулезодифосфата.

Значение фотосинтеза.

Фотосинтез является основой существования земной биосферы. Ежегодная продукция растений Земли превышает 120 млрд. тонн (в пересчете на сухое вещество). При этом поглощается примерно 170 млрд. тонн углекислого газа, расщепляется 130 млрд. тонн воды, выделяется 120 млрд. тонн кислорода и запасается 400·1015 килокалорий солнечной энергии. В процессы синтеза вовлекается около 2 млрд. тонн азота и около 6 млрд. тонн фосфора, калия, кальция, магния, серы, железа и других элементов. За 2 тысячи лет весь кислород атмосферы проходит через растения. Все это означает, что деятельность растений является процессом планетарного масштаба.

В клетках растений одновременно протекают и фотосинтез, и дыхание. Для повышения продуктивности сельскохозяйственных растений изменяют соотношение между реакциями дыхания и фотосинтеза в пользу последних. Например, в условиях защищенного грунта увеличивают продолжительность светового дня, повышают интенсивность освещения, обеспечивают дополнительную подкормку углекислым газом, снижают ночную температуру. Усилия селекционеров должны быть направлены на выведение интенсивных высокопродуктивных сортов.

ЛЕКЦИЯ 6. Биосинтез белков

1. Основные этапы биосинтеза белков. Генетический код

2. Регуляция экспрессии генов

1. Основные этапы биосинтеза белков. Генетический код

Биосинтез белков в клетках представляет собой последовательность реакций матричного типа, в ходе которых последовательная передача наследственной информации с одного типа молекул на другой приводит к образованию полипептидов с генетически обусловленной структурой.

Биосинтез белков представляет собой начальный этап реализации, или экспрессии генетической информации. К главным матричным процессам, обеспечивающим биосинтез белков, относятся транскрипция ДНК и трансляция мРНК. Транскрипция ДНК заключается в переписывании информации с ДНК на мРНК (матричную, или информационную РНК). Трансляция мРНК заключается в переносе информации с мРНК на полипептид. Общая характеристика реакций матричного синтеза дана в главе 3. Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы 1.

Схема1

нетранскрибируемая цепь ДНК А Т Г Г Г Ц Т А Т
транскрибируемая цепь ДНК Т А Ц Ц Ц Г А Т А
транскрипция ДНК ß ß ß
кодоны мРНК А У Г Г Г Ц У А У
трансляция мРНК ß ß ß
антикодоны тРНК У А Ц Ц Ц Г А У А
аминокислоты белка метионин глицин тирозин

 

На схеме видно, что генетическая информация о структуре белка хранится в виде последовательности триплетов ДНК. При этом лишь одна из цепей ДНК служит матрицей для транскрипции (такая цепь называется транскрибируемой). Вторая цепь является комплементарной по отношению к транскрибируемой и не участвует в синтезе мРНК.

Молекула мРНК служит матрицей для синтеза полипептида на рибосомах. Триплеты мРНК, кодирующие определенную аминокислоту, называются кодоны. В трансляции принимают участие молекулы тРНК. Каждая молекул тРНК содержит антикодон – распознающий триплет, в котором последовательность нуклеотидов комплементарна по отношению к определенному кодону мРНК. Каждая молекула тРНК способна переносить строго определенную аминокислоту. Соединение тРНК с аминокислотой называется аминоацил–тРНК.

Молекула тРНК по общей конформации напоминает клеверный лист на черешке. «Вершина листа» несет антикодон. Существует 61 тип тРНК с разными антикодонами. К «черешку листа» присоединяется аминокислота (существует 20 аминокислот, участвующих в синтезе полипептида на рибосомах). Каждой молекуле тРНК с определенным антикодоном соответствует строго определенная аминокислота. В то же время, определенной аминокислоте обычно соответствует несколько типов тРНК с разными антикодонами. Аминокислота ковалентно присоединяется к тРНК с помощью ферментов – аминоацил-тРНК-синтетаз. Эта реакция называется аминоацилированием тРНК.

На рибосомах к определенному кодону мРНК с помощью специфического белка присоединяется антикодон соответствующей молекулы аминоацил-тРНК. Такое связывание мРНК и аминоацил-тРНК называется кодонзависимым. На рибосомах аминокислоты соединяются между собой с помощью пептидных связей, а освободившиеся молекулы тРНК уходят на поиски свободных аминокислот.

Рассмотрим подробнее основные этапы биосинтеза белков.

1 этап. Транскрипция ДНК. На транскрибируемой цепи ДНК с помощью ДНК-зависимой РНК-полимеразы достраивается комплементарная цепь мРНК. Молекула мРНК является точной копией нетранскрибируемой цепи ДНК с той разницей, что вместо дезоксирибонуклеотидов в ее состав входят рибонуклеотиды, в состав которых вместо тимина входит урацил.

2 этап. Процессинг (созревание) мРНК. Синтезированная молекула мРНК (первичный транскрипт) подвергается дополнительным превращениям. В большинстве случаев исходная молекула мРНК разрезается на отдельные фрагменты. Одни фрагменты – интроны – расщепляются до нуклеотидов, а другие – экзоны – сшиваются в зрелую мРНК. Процесс соединения экзонов «без узелков» называется сплайсинг.

Сплайсинг характерен для эукариот и архебактерий, но иногда встречается и у прокариот. Существует несколько видов сплайсинга. Сущность а льтернативного сплайсинга заключается в том, что одни и те же участки исходной мРНК могут быть и интронами, и экзонами. Тогда одному и тому же участку ДНК соответствует несколько типов зрелой мРНК и, соответственно, несколько разных форм одного и того же белка. Сущность транс–сплайсинга заключается в соединение экзонов, кодируемых разными генами (иногда даже из разных хромосом), в одну зрелую молекулу мРНК.

3 этап. Трансляция мРНК. Трансляция (как и все матричные процессы) включает три стадии: инициацию (начало), элонгацию (продолжение) и терминацию (окончание).

Инициация. Сущность инициации заключается в образовании пептидной связи между двумя первыми аминокислотами полипептида.

Первоначально образуется инициирующий комплекс, в состав которого входят: малая субъединица рибосомы, специфические белки (факторы инициации) и специальная инициаторная метиониновая тРНК с аминокислотой метионином – Мет–тРНКМет. Инициирующий комплекс узнает начало мРНК, присоединяется к ней и скользит до точки инициации (начала) биосинтеза белка: в большинстве случаев это стартовый кодон АУГ. Между стартовым кодоном мРНК и антикодоном метиониновой тРНК происходит кодонзависимое связывание с образованием водородных связей. Затем происходит присоединение большой субъединицы рибосомы.

При объединении субъединиц образуется целостная рибосома, которая несет два активных центра (сайта): А –участок (аминоацильный, который служит для присоединения аминоацил-тРНК) и Р –участок (пептидилтрансферазный, который служит для образования пептидной связи между аминокислотами).

Первоначально Мет–тРНКМет находится на А –участке, но затем перемещается на Р –участок. На освободившийся А –участок поступает аминоацил-тРНК с антикодоном, который комплементарен кодону мРНК, следующему за кодоном АУГ. В нашем примере это Гли–тРНКГли с антикодоном ЦЦГ, который комплементарен кодону ГГЦ. В результате кодонзависимого связывания между кодоном мРНК и антикодоном аминоацил-тРНК образуются водородные связи. Таким образом, на рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Ковалентная связь между первой аминокислотой (метионином) и её тРНК разрывается.

После образования пептидной связи между двумя первыми аминокислотами рибосома сдвигается на один триплет. В результате происходит транслокация (перемещение) инициаторной метиониновой тРНКМет за пределы рибосомы. Водородная связь между стартовым кодоном и антикодоном инициаторной тРНК разрывается. В результате свободная тРНКМет отщепляется и уходит на поиск своей аминокислоты.

Вторая тРНК вместе с аминокислотой (в нашем примере Гли–тРНКГли) в результате транслокации оказывается на Р –участке, а А –участок освобождается.

Элонгация. Сущность элонгации заключается в присоединении последующих аминокислот, то есть в наращивании полипептидной цепи. Рабочий цикл рибосомы в процессе элонгации состоит из трех шагов: кодонзависимого связывания мРНК и аминоацил-тРНК на А –участке, образования пептидной связи между аминокислотой и растущей полипептидной цепью и транслокации с освобождением А –участка.

На освободившийся А –участок поступает аминоацил-тРНК с антикодоном, соответствующим следующему кодону мРНК (в нашем примере это Тир–тРНКТир с антикодоном АУА, который комплементарен кодону УАУ).

На рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Связь между предыдущей аминокислотой и её тРНК (в нашем примере между глицином и тРНКГли) разрывается.

Затем рибосома смещается еще на один триплет, и в результате транслокации тРНК, которая была на Р –участке (в нашем примере тРНКГли), оказывается за пределами рибосомы и отщепляется от мРНК. А –участок освобождается, и рабочий цикл рибосомы начинается сначала.

Терминация. Сущность терминации заключается в окончании синтеза полипептидной цепи.

В конце концов, рибосома достигает такого кодона мРНК, которому не соответствует ни одна тРНК (и ни одна аминокислота). Существует три таких нонсенс–кодона: УАА («охра»), УАГ («янтарь»), УГА («опал»). На этих кодонах мРНК рабочий цикл рибосомы прерывается, и наращивание полипептида прекращается. Рибосома под воздействием определенных белков вновь разделяется на субъединицы.

Модификация белков.

Как правило, синтезированный полипептид подвергается дальнейшим химическим превращениям. Исходная молекула может разрезаться на отдельные фрагменты; затем одни фрагменты сшиваются, другие гидролизуются до аминокислот. Простые белки могут соединяться с самыми разнообразными веществами, образуя гликопротеины, липопротеины, металлопротеины, хромопротеины и другие сложные белки. Кроме того, аминокислоты уже в составе полипептида могут подвергаться химическим превращениям. Например, аминокислота пролин, входящая в состав белка проколлагена, окисляется до гидроксипролина. В результате из проколлагена образуется коллаген – основной белковый компонент соединительной ткани.

Реакции модификации белков не являются реакциями матричного типа. Такие биохимические реакции называются ступенчатыми.

Энергетика биосинтеза белков. Биосинтез белков – очень энергоемкий процесс. При аминоацилировании тРНК затрачивается энергия одной связи молекулы АТФ, при кодонзависимом связывании аминоацил-тРНК – энергия одной связи молекулы ГТФ, при перемещении рибосомы на один триплет – энергия одной связи еще одной молекулы ГТФ. В итоге на присоединение аминокислоты к полипептидной цепи затрачивается около 90 кДж/моль. При гидролизе же пептидной связи высвобождается лишь 2 кДж/моль. Таким образом, при биосинтезе большая часть энергии безвозвратно теряется (рассеивается в виде тепла).



Поделиться:


Последнее изменение этой страницы: 2017-02-19; просмотров: 476; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.126.80 (0.056 с.)