Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Лекция 1. Введение в цитологиюСодержание книги
Поиск на нашем сайте
1. Краткая история цитологии. Клетка как элемент и клетка как система. История развития клеточной теории. 2. Свойства и признаки жизни 3. Современная цитология: объект, предмет, методы. Значение цитологии, ее связь с другими науками.
1. Краткая история цитологии. Клетка как элемент и клетка как система Изобретение микроскопа как необходимая предпосылка открытия клетки. Вопрос о пределе делимости материи издавна волновал человечество. Еще древнегреческий натурфилософ Демокрит (460-370 гг. до н. э.) предсказал существование атомов – частиц, неделимых без потери качества. Во второй половине XVII в. немецкий философ Готфрид Вильгельм Лейбниц создал учение о монадах. Монада – это мельчайшая частица, отражающая все свойства целого. Таким образом, Лейбниц предсказал существование элементарной биологической системы, обладающей всеми свойствами жизни. Однако фактическое открытие и дальнейшее изучение клетки стало возможным только после изобретения микроскопа. Это связано с тем, что человеческий глаз не способен различать объекты с размерами менее 0,1 мм, что составляет 100 микрометров (сокращ. микрон или мкм). Размеры же клеток (а тем более, внутриклеточных структур) существенно меньше. Например, диаметр животной клетки обычно не превышает 20 мкм, растительной – 50 мкм, а длина хлоропласта цветкового растения – не более 10 мкм. С помощью светового микроскопа можно различать объекты диаметром в десятые доли микрона. Поэтому световая микроскопия является основным, специфическим методом изучения клеток. Первые оптические приборы (простые линзы, очки, лупы) были созданы еще в XII веке. Но сложные оптические трубки, состоящие из двух и более линз, появляются только в конце XVI века. В изобретении светового микроскопа принимали участие Галилео Галилей, отец и сын Янсены и другие ученые. Первые микроскопы использовались для изучения самых разнообразных объектов. Открытие клетки как элемента тканей многоклеточных организмов. Английский натуралист (физик, астроном, геолог, биолог) Роберт Гук в середине XVII века, изучая микроскопическое строение пробки, установил, что она состоит из вполне замкнутых пузырьков, или ячеек, разделенных общими перегородками-стенками. Р. Гук назвал эти ячейки термином cellula, который переводится на русский язык как «клетка». В дальнейшем Р. Гук изучал срезы стеблей различных растений и обнаружил в них аналогичные ячейки, которые, в отличие от мертвых клеток пробки, были заполнены «питательным соком». Следовательно, заслуга Р. Гука заключается не только в том, что он наблюдал клеточные стенки, но и в том, что он действительно является открывателем клетки как структурной единицы организмов. Свои наблюдения Р. Гук изложил в своем труде «Микрография» (1665). В 1671 г. в Лондонское Королевское Общество поступили доклады Марчелло Мальпиги и Неемии Грю. Оба исследователя работали независимо друг от друга, но их сочинения назывались одинаково – «Анатомия растений». В работе Н. Грю впервые употребляется термин «ткань». М. Мальпиги и Н. Грю сформулировали пенисто-ячеистую теорию: как пена состоит из пузырьков, так и ткань состоит из пузырьков-клеток. Таким образом, в трудах Р. Гука, М. Мальпиги и Н. Грю клетка рассматривается как элемент, как составная часть ткани. Клетки разделены между собой общими перегородками и поэтому не могут быть мыслимы вне ткани, вне организма. Долгое время считалось, что в состав тканей входят не только клетки, но и неклеточные структуры – волокна и сосуды – происхождение которых не связывалось с деятельностью клеток. На основании подобных взглядов была создана теория сосудисто-волокнистого строения организмов, которую разработал швейцарский физиолог Альбрехт фон Галлер в 1757-1766 гг. и дополнил немецкий ботаник Франц Мейен в 1830 г. Открытие клетки как самостоятельной биологической системы. Голландский микроскопист–любитель Антонио ван Левенгук (1680) наблюдал одноклеточные организмы – «анималькули» (инфузории, саркодовые, бактерии) и другие формы одиночных клеток (форменные элементы крови, сперматозоиды). В XVIII в. фундаментальные наблюдения простейших провел немецкий натуралист-любитель Мартин Ледермюллер. Постепенно формировались представления о клетке как элементарном организме: в дальнейшем немецкий физиолог Эрнст фон Брюкке (1861) называл клетку элементарным организмом. Проблема образования новых клеток. Академик Российской Академии наук Каспар Фридрих Вольф впервые поставил вопрос о возникновении клеток (его диссертация называлась «Теория зарождения» – Theoria generationis, 1759). По мнению К. Ф. Вольфа, клетки растений образуются из студневидной гомогенной массы в ходе органогенеза. К. Ф. Вольф был убежден в невозможности существования клеток вне ткани, однако в зрелых плодах он наблюдал отдельные клетки, не имеющие общей перегородки. К. Ф. Вольф установил, что клетка есть единица роста, то есть рост организмов сводится к образованию новых клеток. Система взглядов К. Ф. Вольфа может считаться первой стройной клеточной теорией, однако эта теория не носила универсального характера. К. Ф. Вольф не рассматривал клеточную теорию применительно к животным клеткам: «Этот вопрос обойден молчанием, ибо он не представляет никаких трудностей». В то же время К. Ф. Вольф считал проблему образования клеточной ткани у животных «столь же важной, сколь и темной». Немецкий естествоиспытатель Лоренц Окен (1809) на основе натурфилософских рассуждений пришел к выводу, что клетки одноклеточных и многоклеточных организмов гомологичны: «Первичный пузырек слизи в философском смысле может быть назван инфузорией... Растения и животные могут быть только лишь метаморфозами инфузорий... Организм представляет собою синтез инфузорий». Л. Окен считал, что клетки самопроизвольно возникли эволюционным путем из неклеточного вещества («первичной морской слизи»), а в настоящее время новообразование клеток невозможно. Однако взгляды Л. Окена не были подкреплены экспериментальными данными, что привело в дальнейшем к созданию к ошибочной теории цитогенеза. Состояние цитологии в начале XIX в. В начале XIX века немецкие ботаники Г. Линк, К. Рудольфи, Л. Тревиранус, И. Молденгауер доказали, что каждая растительная клетка является самостоятельной структурой («коробочкой»), покрытой непрерывной оболочкой. Немецкий ботаник Франц Мейен (1830) предсказал существование клеточных мембран: «клетка есть пространство, отграниченное вполне замкнутое мембраной». Это утверждение Мейена было несовместимо с отжившей пенисто-ячеистой теорией. Клетки животных вплоть до начала XIX в. практически не изучались. Известны лишь отдельные наблюдения клеток эпидермиса кожи угря и эритроцитов (Феликс Фонтана, 1781-1787). В начале XIX века в связи с развитием микроскопической техники и химии появилась возможность разнообразных способов подготовки микроскопических препаратов: фиксация, мацерация, дифференциальное окрашивание. В 1830-е гг. чешский гистолог Ян Пуркиня, немецкий физиолог Иоганнес Мюллер и его ученик Теодор Шванн показали, что клеточная структура является универсальной и для животных тканей. Теодор Шванн, изучая структуру тканей хряща и хорды, доказал гомологичность растительных и животных клеток. Т. Шванн показал, что коллагеновые волокна соединительной ткани являются производными клеток. В своих работах Т. Шванн широко использует термин cytos (от греч. «полость») и его производные. Клеточная теория Шванна-Шлейдена. В 1838–1839 гг. Теодор Шванн и немецкий ботаник Маттиас Шлейден сформулировали основные положения клеточной теории:
|
||||
Последнее изменение этой страницы: 2017-02-19; просмотров: 608; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.88.137 (0.01 с.) |