Состав липидов клеточных мембран эукариот и прокариот 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Состав липидов клеточных мембран эукариот и прокариот



  Липид     Эукариот   Прокариот
Холестерол Фосфатидилэтаноламин   Фосфатидилсерин   Фосфатидилхолин Сфингомиелин Гликолипиды Жирные кислоты Имеется Имеется   Имеется   Имеется Имеется Имеются2 Насыщенные и ненасыщенные (моно- и поли-) Отсутствует1 Имеется в больших количествах Имеется в следовых количествах Отсутствует Отсутствует Отсутствуют Только насыщенные или мононенасыщенные3
  Примечание:   1 – у микоплазм в состав мембран входят экзогенные стерины; 2 – у растений преобладают гликолипиды из глицерола; 3 – у некоторых цианобактерий имеются полиненасыщенные жирные кислоты.

 

Мембрана состоит из двух слоев амфипатических молекул липидов (билипидный слой, или бислой). Каждая такая молекула имеет две части – головку и хвост. Хвосты гидрофобны и обращены друг к другу. Головки, напротив, гидрофильны и направлены кнаружи и внутрь клетки. В билипидный слой погружены молекулы белка (рисунок 23).

Молекула фосфолипида фосфатидилхолина состоит одна из жирных кислот – насыщенная, другая – ненасыщенная. Молекулы липидов способны быстро диффундировать в боковом направлении в пределах одного монослоя и крайне редко переходят из одного монослоя в другой.

Химический состав цитолеммы эу- и прокариотических клеток существенно отличается (таблица 9).

Билипидный слой ведет себя как жидкость, обладающая значительным поверхностным натяжением. Вследствие этого он образует замкнутые полости, которые не спадаются.

Некоторые белки проходят через всю толщу мембраны, так что один конец молекулы обращен в пространство по одну сторону мембраны, другой – по другую. Их называют интегральными (трансмемранными). Другие белки расположены так, что в околомембранное пространство обращен лишь один конец молекулы, второй же конец лежит во внутреннем или в наружном монослое мембраны. Такие белки называют внутренними или, соответственно, внешними (иногда те и другие называют полуинтегральными). Некоторые белки (обычно переносимые через мембрану и временно находящиеся в ней) могут лежать между фосфолипидными слоями.

Концы белковых молекул, обращенные в околомембранное пространство, могут связываться с различными веществами, находящимися в этом пространстве. Поэтому интегральные белки играют большую роль в организации трансмембранных процессов. С полуинтегральными белками всегда связаны молекулы, осуществляющие реакции по восприятию сигналов из среды (молекулярные рецепторы) или по передаче сигналов от мембраны в среду. Многие белки обладают ферментативными свойствами.

Бислой асимметричен: в каждом монослое располагаются различные липиды, гликопротеиды обнаруживаются только в наружном монослое так, что их углеводные цепи направлены кнаружи. Молекулы холестерина в мембранах эукариот лежат во внутренней, оьращенной к цитоплазме половине мембраны.

Цитохромы располагаются в наружном монослое, а АТФ – синтетазы – на внутренней стороне мембраны.

Подобно липидам, белки также способны к латеральной (боковой) диффузии, однако скорость ее меньше, чем у липидных молекул. Переход из одного монослоя в другой практически невозможен.

Из мембранных белков прокариот лучше всего изучен транспортный белок бактериородопсин, который содержится в «пурпурной мембране» (Halobacterium halobium). L – спираль бактериородопсина пересекает липидный бислой 7 раз.

Бактериородопсин представляет собой полипептидную цепь, состоящую из 248 аминокислотных остатков и простатической группы – хромофора, поглощающего кванты света и ковалентно связанного с лизином. Под влиянием кванта света хромофор возбуждается, что приводит к конформационным изменениям полипептидной цепи.

Это вызывает перенос двух протонов с цитоплазматической поверхности мембраны на ее внешнюю поверхность, в результате чего в мембране возникает электрический потенциал, вызывающий синтез АТФ. Среди мембранных белков прокариот различают пермеазы - переносчики, ферменты, осуществляющие различные синтетические процессы, в том числе и синтез АТФ.

Концентрация веществ, в частности ионов, по обе стороны мембраны не одинакова. Поэтому каждая сторона несет свой электрический заряд. Различия в концентрации ионов создают соответственно и разность электрических потенциалов.

Поверхностный комплекс

 

Основой поверхностного комплекса является биологическая мембрана, называемая наружной клеточной мембраной (иначе - плазмалеммой). Ее толщина около 10 нм, так что в световом микроскопе она неразличима.

Рис. 25. Поверхностный комплекс: 1 – гликопротеины; 2 – периферические белки; 3 – гидрофильные головки фосфолипидов; 4 – гидрофобные хвосты фосфолипидов; 5 – микрофиламенты; 6 – микротрубочки; 7 – субмембранные белки; 8 – трансмембранный (интегральный) белок (по А.Хэму и Д. Кормаку, с изменениями).

 

Поверхностный комплекс обеспечивает взаимодействие клетки с окружающей ее средой. В связи с этим он выполняет следующие основные функции: разграничительную (барьерную), транспортную, рецепторную (восприятие сигналов из внешней для клетки среды), а также функцию передачи информации, воспринятой рецепторами, глубоким структурам цитоплазмы. Плазмалемма, таким образом, обеспечивает поверхностные свойства клетки. (рис. 25)

Наружный и внутренний электроноплотные слои плазмалеммы имеют толщину около 2-5 нм, средний электронопрозразрачный слой – около 3 нм. При замораживании – складывании мембрана разделяется на два слоя: слой А, содержащий многочисленные, иногда расположенные группами крупные частички размерами 8 - 9,5 нм, и слой В, содержащий примерно такие же частички (но в меньшем количестве) и мелкие углубления. Слой А – это скол внутренней (цитоплазматической) половины мембраны, слой В – наружной.

В билипидный слой плазмалеммы погружены молекулы белка. Некоторые из них (интегральные, или трансмембранные) проходят через всю толщину мембраны, другие (периферические или внешние) лежат во внутреннем или наружном монослоях мембраны.

Некоторые интегральные белки связаны нековалентными связями с белками цитоплазмы. Подобно липидам, белковые молекулы также являются амфипатическими – их гидрофобные участки окружены аналогичными «хвостами» липидов, а гидрофильные обращены наружу или внутрь клетки.

Белки осуществляют большую часть мембранных функций: многие из них являются рецепторами, другие – ферментами, третьи- переносчиками. Подобно липидам, белки также способны к латеральной диффузии, однако скорость ее меньшая, чем у липидных молекул. Переход молекул белка из одного монослоя в другой практически невозможен. Так как в каждом монослое содержатся свои белки, бислой асимметричен. Несколько белковых молекул могут образовывать канал, через который проходят определенные ионы или молекулы.

Одной из важнейших функций биологических и, в том числе, плазматической мембраны является транспорт. «Хвосты» обращенных друг к другу липидов образуют гидрофобный слой, препятствующий проникновению полярных водорастворимых молекул. Как правило, внутренняя цитоплазматическая поверхность плазмалеммы несет отрицательный заряд, что облегчает проникновение в клетку положительно заряженных ионов.

Различают два вида транспорта: пассивный и активный. Первый не требует затрат энергии, второй – энергозависимый.

Пассивный транспорт незаряженных молекул осуществляется по градиенту концентрации, транспорт заряженных молекул зависит от градиента концентрации Н и трансмембранной разности потенциалов, которые объединяются в трансмембранный градиент Н, или электрохимический протонный градиент. Внутренняя цитоплазматическая поверхность мембраны несет отрицательный заряд, что облегчает проникновение в клетку положительного заряженных ионов.

Диффузия (от лат. diffusio – распространение, растекание) – это переход ионов или молекул, вызванный их броуновским движением, через мембраны из зоны, где эти вещества находятся в более высокой концентрации, в зону с более низкой концентрацией до тех пор, пока концентрация по обе стороны мембраны выровняются. Диффузия может быть нейтральной (незаряженные вещества проходят между липидными молекулами или через белок формирующий канал) или облегченной (специфические белки-переносчики связывают вещество и переносят его через мембрану). Облегченная диффузия протекает быстрее, чем нейтральная.

Вода поступает в клетку путем осмоса (от греч. osmos –толчок, давление). В настоящее время математически доказывается наличие в цитоплазме мельчайших временных пор, возникающих по мере необходимости.

Активный транспорт осуществляют белки-переносчики, при этом расходуется энергия, получаемая вследствие гидролиза АТФ или протонного потенциала. Активный транспорт происходит против градиента концентрации.

В транспортных процессах прокариотической клетки основную роль играет электрохимический протонный градиент, при этом перенос идет против градиента концентрации веществ.

Внешняя поверхность плазмолеммы покрыта гликокаликсом. Толщина его различна и колеблется даже в разных участках поверхности одной клетки от 7,5 до 200 нм. Гликокаликс представляет собой совокупность молекул, связанных с белками мембраны. По составу эти молекулы могут представлять собой цепочки полисахаридов, гликолипидов и гликопротеинов.

Многие из молекул гликокаликса функционируют в качестве специфических молекулярных рецепторов. Концевой свободный отдел рецептора обладает уникальной пространственной конфигурацией. Поэтому с ним могут объединяться только те молекулы, находящиеся вне клетки, которые обладают также уникальной конфигурацией, но зеркально симметричной по отношению к рецептору. Именно благодаря существованию специфических рецепторов на поверхности клетки могут закрепляться так называемые сигнальные молекулы, в частности, молекулы гормонов.

Чем больше конкретных специфических рецепторов находится в гликокаликсе, тем активнее клетка реагирует на соответствующие сигнальные вещества. Если в гликокаликсе нет молекул, специфически связывающих с внешними веществами, клетка на последние не реагирует. Таким образом, гликокаликс наряду с самой плазмалеммой обеспечивает и барьерную функцию поверхностного комплекса

К глубокой поверхности плазмалеммы примыкают поверхностные структуры цитоплазмы. Они связываются с белками плазмалеммы и осуществляют передачу информации глубинным структурам, запуская сложные цепи биохимических реакций.

Они же, изменяя свое взаимоположение, меняют конфигурацию плазмалеммы. (рис. 26)

 

Рис. 26. Межклеточные соединения: I – плотное соединение, II – десмосома, III – полудесмосома, IV – нексус (щелевидное соединение); 1 – плазмалеммы смежных клеток; 2 – зоны слипания, 3 – электроноплотные пластинки, 4 – промежуточные филаменты (тонофиламенты), закрепленные в пластинке, 5 – межклеточные филаменты, 6 – базальная мембрана, 7 – подлежащая соединительная ткань, 8 – коннексоны, каждый из которых состоит из 6 субъединиц с цилиндрическим каналом (по А. Хэму и Д. Кормаку и по Б. Албертсу и соавт., с изменениями).

Практическая часть

Пример симпласта



Поделиться:


Последнее изменение этой страницы: 2017-02-19; просмотров: 572; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.205.159.48 (0.006 с.)