Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Общая схема строения, И - схема строения кристы; 1 - наружная мембрана,Содержание книги
Поиск на нашем сайте
Внутренняя мембрана, 3 - кристы. 4 - матрикс, 5 - складка внутренней мембраны, 6-грибовидные тельца (по Б. Албертсу и соавт. и по К. де Дюву, с изменениями).
Внутренняя мембрана митохондрий образует гребневидные впячивания – кристы – разнообразной формы, на поверхности которых есть грибовидные тела – комплексы фермента АТФ-аза. Пространство между внутренней и внешней мембранами заполнено межмембранным матриксом. Кристы могут терять связь с внутренней мембраной и превращаться в замкнутые полости. В этом случае содержимое таких полостей все равно называется межмембранным матриксом. Наличие крист увеличивает поверхность внутренней (активной) мембраны. Внутреннее содержимое митохондрии называется внутренний матрикс, или просто матрикс. В матриксе содержатся: митохондриальные ДНК, РНК, рибосомы и включения. Таким образом, митохондрии обладают собственным белоксинтезирующим аппаратом. Дополнительные функции митохондрий: регуляция водного режима, хранение питательных веществ, хранение части генетической информации и биосинтез некоторых белков. Форма митохондрий зависит от таксономической принадлежности организмов, от тканевой принадлежности клеток и от физиологического состояния клеток. Крупные разветвленные митохондрии могут дробиться на множество мелких, а затем вновь сливаться. За счет этих преобразований число митохондрий в клетке может изменяться от 1 до десятков тысяч. В соматических клетках млекопитающих обычно содержится 500-1000 митохондрий. У аэробных прокариот и мезокариот митохондрий нет. Их функции выполняют мезосомы. Роль межмембранного матрикса играет пространство между плазмалеммой и клеточной стенкой. Митохондрии также отсутствуют у некоторых анаэробных паразитических Одноклеточных. У анаэробных паразитических червей (например, у аскариды) митохондрии выполняют запасающие функции. Пластиды Пластиды – специализированные полуавтономные двумембранные органоиды растений, выполняющие разнообразные функции. Пластиды описал А. ван Левенгук (1676), но их подробное изучение связано с развитием биохимии и электронной микроскопии. Пластиды различаются по форме, размерам, строению и функциям. В специализированных клетках обычно обнаруживается только один тип пластид. Исходной формой пластид являются пропластиды, или архепластиды. Увеличиваясь в размерах, пропластиды превращаются в лейкопласты. Лейкопласты в своем развитии превращаются или в хлоропласты, или в другие типы пластид: амилопласты содержат крахмал и превращаются в итоге в крахмальные зерна; липидопласты накапливают липиды и, подобно сферосомам, превращаются в масляные капли; протеинопласты накапливают белки и становятся их хранилищем. Хромопласты представляют собой последнюю стадию существования хлоропластов: в них происходит разрушение зеленых пигментов, но длительное время сохраняются желтые и красные пигменты. Происхождение пластид в филогенезе и онтогенезе остается неясным. Твердо установлено, что пластиды никогда не образуются заново; механизмы увеличения числа пластид в клетке, вероятно, разнообразны: деление, дробление, почкование. В изолированной культуре пластиды не могут существовать длительное время. Хлоропласты – пластиды, в которых протекают все реакции фотосинтеза: фотофосфорилирование и фиксация углекислого газа. Форма и количество хлоропластов в клетках относительно постоянны и зависят от таксономической принадлежности организмов, а также от уровня полиплоидии (у полиплоидов пластид больше). Обычно в клетке содержится несколько десятков хлоропластов. Впервые участие хлоропластов в процессах фотосинтеза показал Т. Энгельман (1883), хотя еще Ч. Дарвин считал, что хлорофилл – самое интересное из созданных природой органических веществ. Способность хлоропластов осуществлять все процессы фотосинтеза тесно связана с их строением. Внутреннее содержимое хлоропластов называется строма. Строма содержит пластидные ДНК, РНК, рибосомы и включения. Таким образом, хлоропласты обладают собственным белоксинтезирующим аппаратом. Впячивания внутренней мембраны образуют тилакоиды, заполненные матриксом. Одиночные тилакоиды называются ламеллы (или фреты), комплексы (стопки) тилакоидов – граны. Мембраны тилакоидов содержат комплексы пигментов (фотосистемы) и аналоги грибовидных тел (фермент АТФ-аза). Дополнительные функции пластид (в том числе, и хлоропластов) – те же, что и у митохондрий: регуляция водного режима, хранилище питательных веществ, хранение части генетической информации и биосинтез некоторых белков. У фотосинтезирующих пурпурных и зеленых бактерий пластиды отсутствуют. Их функции выполняют разнообразные мезосомы: прокариотические тилакоиды, ламеллы и хроматофоры. У цианобактерий в цитоплазме имеются ламеллы, по структуре сходные с ламеллами высших растений. У водорослей пластиды обычно называются хроматофоры. Форма хроматофоров: париетальные (постенные), чашевидные, кольцеобразные, цилиндрические, спиральные, звездчатые. Число тилакоидов в составе одной ламеллы – от 1 до 3. У зеленых водорослей имеются граны. Количество оболочек (мембран) различно: 2 (красные и зеленые водоросли), 3 (эвгленовые и пирофитовые) и 4 (золотистые, желто-зеленые, диатомовые и бурые). При наличии 4 мембран внешняя мембрана постепенно переходит в мембраны эндоплазматической сети и ядерной оболочки. В состав хроматофоров входит специфическая белковая структура – пиреноид. Вокруг пиреноида откладывается крахмал. Пиреноиды имеются также в пластидах некоторых моховидных. Задания 1. Заполните таблицу 15 «Сравнительная характеристика митохондрий и хлоропластов». При наличии признака поставьте в соответствующую ячейку знак +. Сделайте вывод о причинах сходства и причинах различий митохондрий и хлоропластов. 2. Анализ «слепых» препаратов. Практическая часть Таблица 15.
|
||||
Последнее изменение этой страницы: 2017-02-19; просмотров: 660; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.227.192 (0.008 с.) |