Системы n линейных уравнений с n неизвестными. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Системы n линейных уравнений с n неизвестными.



Методы их решения

Рассмотрим систему n линейных уравнений с n неизвестными.

а11х1 + а12х2 + … + а1nxn = b1

а21х1 + а22х2 + … + а2nxn = b2 (1)

……………………………….

аn1х1 + аn2х2 + … + аnnxn = bn

 

Определение: Решением системы (1) называется совокупность чисел (х1, х2, …, хn), которая обращает каждое уравнение системы в верное равенство.

Матрица А, составленная из коэффициентов при неизвестных, называется основной матрицей системы (1).

A = .

Матрица В, состоящая из элементов матрицы А и столбца свободных членов системы (1), называется расширенной матрицей.

В =

 

Матричный метод

Рассмотрим матрицы

Х = – матрица неизвестных;

С = – матрица свободных членов системы (1).

Тогда по правилу умножения матриц систему (1) можно представить в виде матричного уравнения

А × Х = С (2)

Решение уравнения (2) изложено выше, то есть Х = А-1 × С, где А-1 – обратная матрица для основной матрицы системы (1).

Решить системы уравнений матричным методом:

59. 60.

61. 62.

63. . 64. .

Метод Крамера

 

Система n линейных уравнений с n неизвестными, главный определитель которой отличен от нуля, всегда имеет решение и притом единственное, которое находится по формулам:

,

где D = det А – определитель основной матрицы А системы (1), который называется главным, Dхi получаются из определителя D заменой i-ого столбца столбцом из свободных членов, т. е.

D = ;

1 = ;

2 = ;

n = ;

Пример. Решить систему уравнений методом Крамера:

1 + 3х2 + 4х3 = 15

х1 + х2 + 5х3 = 16

1 - 2х2 + х3 = 1

Решение.

Вычислим определитель основной матрицы системы

D = det A = = 44 ¹ 0

Вычислим вспомогательные определители

1 = = 0;

2 = = 44;

3 = = 132.

По формулам Крамера найдем неизвестные

; ; .

Таким образом, х1 = 0; х2 = 1; х3 = 3.

 

 

Решить системы уравнений методом Крамера:

65. . 66. .

67. . 68. .

69. . 70. .

71. . 72. .

73. . 74. .

Метод Гаусса

Суть метода Гаусса заключается в последовательном исключении неизвестных из уравнений системы, т.е. приведении основной матрицы системы к треугольному виду, когда под ее главной диагональю стоят нули. Это достигается с помощью элементарных преобразований матрицы над строчками. В результате таких преобразований не нарушается равносильность системы, и она приобретает также треугольный вид, т. е. последнее уравнение содержит одну неизвестную, предпоследнее – две и т. д. Выражают из последнего уравнения n-ую неизвестную и с помощью обратного хода, используя ряд последовательных подстановок, получают значения всех неизвестных.

Пример. Решить систему уравнений методом Гаусса

1 + 2х2 + х3 = 17

1 - х2 + 2х3 = 8.

х1 + 4х2 - 3х3 = 9

Решение. Выпишем расширенную матрицу системы и приведем содержащуюся в ней матрицу А к треугольному виду.

В = .

Поменяем местами первую и третью строки матрицы, что равносильно перестановке первого и третьего уравнений системы. Это позволит нам избежать появления дробных выражений при последующих вычислениях

В ~ .

Первую строку полученной матрицы умножим последовательно на (-2) и (-3) и сложим соответственно со второй и третьей строками, при этом В будет иметь вид:

В ~.

После умножения второй строки на и сложения ее с третьей строкой матрица А примет треугольный вид. Однако, чтобы упростить вычисления, можно поступить следующим образом: умножим третью строку на (-1) и сложим со второй. Тогда получим:

В ~ .

Далее, умножая вторую строку матрицы на 10 и складывая с третьей, окончательно получим:

В ~ .

Восстановим из полученной матрицы В систему уравнений, равносильную данной

х1 + 4х2 - 3х3 = 9

х2 - 2х3 = 0

- 10х3 = -10

Из последнего уравнения находим Найденное значение х3 = 1 подставим во второе уравнение системы, из которого х2 = 2х3 = 2 × 1 = 2.

После подстановки х3 = 1 и х2 = 2 в первое уравнение для х1 получим х1 = 9 - 4х2 + 3х3 = 9 - 4 × 2 + 3 × 1 = 4.

Итак, х1 = 4, х2 = 2, х3 = 1.

Замечание. Для проверки правильности решения системы уравнений необходимо подставить найденные значения неизвестных в каждое из уравнений данной системы. При этом, если все уравнения обратятся в тождества, то система решена верно.

Проверка:

3 × 4 + 2 × 2 + 1 = 17 верно

2 × 4 - 2 + 2 × 1 = 8 верно

4 + 4 × 2 - 3 × 1 = 9 верно

Итак, система решена верно.

Решить системы уравнений методом Гаусса:

75. . 76. .

77. . 78. .

79. . 80. .

81. . 82. .

83. . 84. .

 

Метод Жордана-Гаусса

Суть метода Жордана-Гаусса состоит в полном исключении переменных из каждого уравнения системы, кроме единственной, т. е. основная матрица системы приводится с помощью элементарных преобразований над строчками к единичной матрице и система (1) приобретает следующий вид:

откуда видно, что неизвестные х1; х2;…; хn равны соответствующим свободным членам в1'; в2';…; вn', т.е. решением системы уравнений (1) является набор чисел (в1'; в2';…; вn').

 



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 3889; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.59.163 (0.01 с.)