![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Изучение адсорбции уксусной кислоты из водного раствора на активированном угле.Содержание книги
Поиск на нашем сайте
Цель работы: экспериментальное определение изотермы адсорбции одноосновной карбоновой кислоты из водного раствора на активированном угле. Использование уравнений Ленгмюра и Фрейндлиха для описания хода изотермы адсорбции. Вычисление удельной поверхности адсорбента. В результате выполнения данной работы студент должен: – знать теоретические основы процесса адсорбции из водных растворов на твердом адсорбенте; – уметь провести обработку экспериментальных данных на основании уравнений Ленгмюра и Фрейндлиха; – получить изотерму адсорбции, рассчитать параметры изотермы адсорбции Ленгмюра и Фрейндлиха.
Оборудование и реактивы: конические колбы (250 см3) с пробками, конические колбы (100 см3), пипетки, бюретки, весы технические ВЛТЭ – 500, воронки, фарфоровая ступка и пестик, фильтровальная бумага (синяя лента), шейкер (встряхиватель) типа S3, водный раствор уксусной кислоты (c (CH3COOH) = 1,0 моль/дм3), водный раствор пропионовой кислоты (c (C2H5COOH) = 1,0 моль/дм3), водный раствор гидроксида натрия (c (NaOH) = 0,1 и 0,4 моль/дм3), твердый адсорбент – активированный уголь.
Порядок выполнения работы. По заданию преподавателя в колбах вместимостью 250 см3 приготовить из рабочего раствора ПАВ шесть растворов объемом 50 см3 с различной молярной концентрацией карбоновой кислоты. Требуемые объемы рабочего раствора карбоновой кислоты и дистиллированной воды занести в таблицу 1. Для приготовления растворов использовать две бюретки вместимостью 50 см3. Таблица 1 – Приготовление серии растворов уксусной кислоты для изучения адсорбции на активированном угле (рабочий раствор с (………) = 1,0 моль/дм3)
1. Активированный уголь (таблетки) измельчить в фарфоровой ступке и с использованием технохимических весов взять шесть навесок адсорбента по 1,00 г с точностью ± 0,01 г. 2. В колбы с приготовленными растворами внести навески 1,00 г активированного угля, закрыть их пробками и установить на встряхиватель. По достижении адсорбционного равновесия в системе (встряхивание 1–1,5 ч.) растворы ПАВ отделить от адсорбента фильтрованием (фильтр – синяя лента), отбрасывая первые порции фильтрата ≈ 7 – 10 см3 (почему?). Остальной объем фильтрата использовать для определения равновесной концентрации ПАВ титрованием раствором щелочи в присутствии фенолфталеина. Провести 2–3 параллельных титрования каждого раствора. Целочисленные значения аликвот и концентрацию титранта подобрать, ориентируясь на начальную концентрацию карбоновой кислоты, так, чтобы на титрование пошло 10 – 20 см3 титранта. Полученные результаты занести в таблицу 2.
Таблица 2 – Результаты определения равновесной концентрации уксусной кислоты после адсорбции (титрант – раствор гидроксида натрия)
3. Используя формулу (10.2), рассчитать гиббсовскую адсорбцию (в ммоль/г), полученные данные занести в таблицу 3. Далее построить изотерму адсорбции, откладывая по оси абсцисс значения равновесной концентрации кислоты после адсорбции, а по оси ординат – гиббсовскую адсорбцию (рисунок 1).
Таблица 3 – Сводные экспериментальные и расчетные данные для построения изотермы адсорбции уксусной кислоты из ее водных растворов на активированном угле (объем раствора ПАВ 50 см3)
4. Для нахождения параметров уравнений Ленгмюра и Фрейндлиха построить графики зависимости 1/ Г от 1/ ср и lg Г от lg cр, обрабатывая полученные прямые по МНК (рисунки 2 и 4). Записать явный вид обоих уравнений, заменяя буквенные обозначения параметров их числовыми значениями, и на одном графике сопоставить ход экспериментально определенной изотермы адсорбции с расчетным ходом изотерм в соответствии с найденными уравнениями Ленгмюра и Фрейндлиха. 3. Используя найденное значение предельной адсорбции Γ∞, рассчитать по формуле (10.5) удельную поверхность активированного угля.
Вопросы и задачи для самостоятельного решения 1. Условия конкурентной и избирательной адсорбции из растворов на твердых адсорбентах. Правило уравнивания полярностей. Ориентация молекул ПАВ в поверхностном слое. Расчет избыточной адсорбции ПАВ из экспериментальных данных и его теоретическое обоснование. 2. Признаки изотермы адсорбции ленгмюровского типа. Модельные и эмпирические уравнения, описывающие изотерму избирательной адсорбции ПАВ из раствора на твердом адсорбенте. Расчет параметров уравнений из экспериментальных данных. 3. Определение величины удельной поверхности адсорбента. 4. Полимолекулярная адсорбция, вид ее изотермы и расчет величины удельной поверхности адсорбента по теории БЭТ. 5. Сколько литров аммиака при 273 К и 1 атм может адсорбироваться на поверхности 25 г активированного угля, если образуется мономолекулярный слой. Поверхность 1 г угля примите равной 950 м3. Диаметр молекулы 3 Å. Ответ: 12,62 дм3 6. Вычислить площадь поверхности катализатора, 1 г которого при образовании монослоя адсорбирует при н.у. 83 cм3 азота. Примите, что эффективная площадь, занятая молекулой азота равна 16,2·10-20 м2. Ответ: 361,5 м2. 7. Найдите степень заполнения поверхности* аэросила при адсорбции натриевой слои бензилпенициллина из раствора концентрации 0,004; 0,0075; 0,011 моль/дм3, если адсорбция описывается уравнением Ленгмюра с константой адсорбционного равновесия 790 дм3/моль. Ответ: 0,760; 0,856; 0,897. * Степень заполнения поверхности адсорбента θ = Г/Г∞. Вопросы и задачи приложить к отчету. 11. Тема 9. Физикохимия дисперсных систем. Классификация дисперсных систем. Лиофобные коллоидные системы (золи), их получение, свойства. Коагуляция золей электролитами. Правило Шульце-Гарди.
Теоретические аспекты: Коллоидные растворы (золи) – это гетерогенные системы, обладающие большой свободной энергией поверхности, т.е. они термодинамически неустойчивы. Различают кинетическую и агрегативную устойчивость золей. Кинетическая устойчивость золей обеспечивается броуновским движением частиц дисперсной фазы, которое противодействует оседанию частиц под действием силы тяжести. Причиной агрегативной устойчивости золей является наличие у частиц одноименных зарядов и сольватных оболочек, которые препятствуют слипанию частиц. Коагуляция золей – процесс объединения коллоидных частиц в более крупные агрегаты вследствие потери агрегативной устойчивости. Процесс коагуляции могут вызвать различные факторы: изменение температуры, механическое воздействие, облучение, добавление растворов электролитов. Наиболее изучена и имеет практическое наибольшее практическое значение коагуляция золей электролитами. Сильные электролиты вызывают коагуляцию золей, при достижении (электролитов) концентрации их в растворе некоторого значения, называемого порогом коагуляции. Порог коагуляции (с к) – минимальное количество электролита (в молях), которое надо добавить к 1 л золя, чтобы вызвать начало коагуляции за определенный промежуток времени. Порог коагуляции рассчитывается по формуле:
Коагулирующее действие электролитов подчиняется правилу Шульце-Гарди: коагуляцию вызывают ионы с зарядом, противоположном
Таким образом, лучшим коагулятором является тот электролит, который имеет наименьший порог коагуляции для данного золя. Дерягин и Ландау с помощью теоретических расчетов показали, что значения порогов коагуляции для коагулирующих ионов различного заряда относятся как с к(+1): с к(+2): с к(+3) ~ Лабораторная работа №8.
|
|||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-27; просмотров: 279; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.97.9.172 (0.008 с.) |