Частота дыхательных движений в 1 мин 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Частота дыхательных движений в 1 мин




 


Число дыханий
Число дыханий

/ — пневмограф; 2— капсула Марея; 3 — кимограф; 4 — рычажок с писчиком

дохе оно все равно отрицательное, на 1...3 мм рт. ст. ниже атмос­ферного, что обусловлено эластической тягой легких.

Дыхательные движения можно зарегистрировать (записать) с помощью пневмографа — резиновой капсулы, прикладываемой к грудной клетке животного (рис. 7.4). Полость капсулы сообщается резиновой трубкой с капсулой Марея, рычажок которой поднима­ется и опускается при колебаниях давления в пневмографе при вдохе и выдохе, во время экскурсий грудной стенки. Запись дыха­тельных движений на движущейся ленте кимографа называется пневмограммой.

Типы и частота дыхания. В зависимости от преобладания тех или иных мышц, участвующих в дыхательных движениях, разли­чают три типа дыхания:

грудное (участвуют преимущественно мышцы грудного пояса и наружные межреберные);

брюшное (преобладают сокращения диафрагмы и мышц живота);

смешанное.

У крупных сельскохозяйственных животных обычно дыхание смешанного типа, и при осмотре трудно выделить преобладание каких-либо групп мышц, участвующих в дыхательных движениях. У коров и других видов животных во время беременности, когда плод уже большого размера, дыхание становится грудного типа. При различных заболеваниях тип дыхания также может изменять­ся. Например, при заболеваниях органов грудной полости дыха­ние осуществляется преимущественно за счет диафрагмы и мышц живота, а при заболеваниях органов брюшной полости — за счет межреберных мышц.

В спокойном состоянии у животных дыхание ритмичное, дыха­тельные зубцы одинаковы по амплитуде. Однако при малейших отклонениях в состоянии животного рисунок дыхания (паттерн) быстро изменяется. Так, при мышечной работе, при волнении, в


 

Вид животного

Вид животного

 

Лошади:   Собаки:  
жеребята 14...15 молодые 20...22
взрослые 9...12 взрослые 14...18
Крупный рогатый скот:   Кошки 10...25
взрослые 10...30 Северный олень 8...16
телята 37...56 Верблюд 5...12
телки 27...30 Морские свинки 100...150
Мелкий рогатый скот:   Мыши До 200
ягнята 15...18 Кролики 50...60
овцы 8...20 Куры 20...40
козлята 12...20 Утки 50...75
козы 9...18 Голуби 20...40
Свиньи 8...18    

Следует учесть, что в таблице приведены средние показатели. Однако чем ниже масса тела животного, тем чаще дыхание: у той­терьера и у кавказской овчарки частота дыхания заметно отлича­ется. Продуктивность животных влияет на частоту дыхания: у вы­сокопродуктивных молочных коров в состоянии физиологическо­го покоя дыхание в 1,5 раза чаще, чем у низкопродуктивных. У молодых животных дыхание чаще, чем у взрослых.

Легочные объемы. Различают общую и жизненную емкость лег­ких. Жизненная емкость легких (ЖЕЛ) — это максимальный объем воздуха, который можно выдохнуть после максимального вдоха. ЖЕЛ складывается из трех компонентов — дыхательного, резервного и дополнительного (рис. 7.5).

Дыхательный объем — это объем воздуха, который можно спо­койно, без усилия вдохнуть и выдохнуть, т. е. тот воздух, кото­рый выдыхается после спокойного вдоха в состоянии покоя. У крупных животных (лошадь, корова) он составляет 5...6 л, у чело­века—до 0,5 л. Резервный объем — это воздух, который можно максимально выдохнуть после спокойного выдоха (например, при чихании). Дополнительный объем — это воздух, который можно до­полнительно вдохнуть после спокойного вдоха (например, при


 




 

глубоком вздохе, перед чиханием). Объемы резервного и дополни­тельного воздуха примерно одинаковы: у крупных животных по 10... 12 л, у человека по 1,5...3 л.

У мужских особей ЖЕЛ больше, чем у женских. У высокопро­дуктивных коров и спортивных лошадей она больше, чем у низ­копродуктивных или нетренированных. Все перенесенные заболе­вания органов дыхания, а также частое вдыхание пыли, табачного дыма, смол, ядовитых газов снижают ЖЕЛ и адаптационные воз­можности дыхательного аппарата.

После полного, максимально глубокого выдоха в легких остает­ся еще часть воздуха, которая не выдыхается, — остаточная порция воздуха. У крупных животных объем остаточного воз­духа около 10 л, у человека 1 л. Остаточный воздух не входит в жизненную емкость легких. Сумма ЖЕЛ и остаточного воздуха составляет общую емкость легких.

Почему остаточный воздух невозможно выдохнуть? Во-первых, из-за отрицательного давления в грудной полости при выдохе, вследствие чего на внутреннюю поверхность альвеол действует бо­лее высокое давление, чем на наружную, и альвеолы постоянно растянуты воздухом. Во-вторых, часть бронхиол закрывается и спа­дает раньше альвеол, поэтому воздух попадает как бы в воздушные «ловушки». В-третьих, спадению альвеол при выдохе препятствует сурфактант легких.

 

Сумма остаточного и резервного воздуха называется функциональ­ной остаточной емкостью или альвеолярным воздухом.

Вентиляция легких. Вентиляция легких — это обновление газо­вого состава альвеолярного воздуха. Ее характеризует минутный объем, который зависит от глубины и частоты дыхания. Так, если


у лошади в состоянии покоя дыхательный объем составляет 5 л, а частота дыхания — 8 дыхательных движений в 1 мин, то минутный объем дыхания будет равен 5 х 8 = 40 л.

С учетом того, что 30 % вдыхаемого воздуха остается в воздухо­носных путях, при каждом вдохе это составит 1,5 л, а за 1 мин 1,5 х 8 = 12 л, то, следовательно, до альвеол дойдет 40 — 12 = 28 л. Эта величина называется альвеолярной вентиляцией, она равна объему воздуха, проходящего через альвеолы легких за 1 мин. Аль­веолярная вентиляция может возрастать за счет увеличения дыха­тельного объема или за счет учащения дыхания.

У лошадей во время бега минутный объем легких достигает 400...500 л, что примерно в 10 раз больше, чем в состоянии покоя. При этом частота дыхания при напряженной работе у тренирован­ных лошадей возрастает в 1,5...2 раза, а у нетренированных — зна­чительно больше. Однако при большой частоте дыхание становит­ся поверхностным, а вентиляция легких может даже уменьшиться. Наиболее эффективно вентилируются легкие при значительном углублении и небольшом учащении дыхания.

Отношение объема вдыхаемого воздуха к альвеолярному назы­вается коэффициентом альвеолярной вентиляции. При этом следует учитывать, что 30 % воздуха остается в воздухоносных путях. На­пример, у лошади из 5 л вдыхаемого воздуха до альвеол доходит 70 %, или 3,5 л; сумма резервного и остаточного воздуха — около 20 л. Следовательно, коэффициент альвеолярной вентиляции ра­вен 3,5:20 или 1: 6. Это значит, что при каждом спокойном вдохе вентилируется 1/6 альвеол.

Во время дыхания отдельные участки легких вентилируются не­одинаково, особенно у старых животных. Некоторые альвеолы вен­тилируются, т. е. через них проходит воздух при вдохе и выдохе, но не омываются кровью из-за спазма кровеносных сосудов, поэтому газообмен между кровью и альвеолярным воздухом в них не проис­ходит. Часть альвеол перфузируется кровью, но не вентилируется, в них также газообмен не совершается. И наконец, некоторые альвео­лы выключены из кровотока и не вентилируются. В области верху­шек легких альвеолы вентилируются менее эффективно, чем вблизи диафрагмы, и слабее перфузируются кровью. Возможно поэтому в этих отделах легких чаще локализуются патологические процессы.

ГАЗООБМЕН В ЛЕГКИХ

В обычных условиях состав атмосферного воздуха относи­тельно постоянен. В сухом воздухе содержится 20,93 % кислорода, 0,03 — диоксида углерода, 79,04 % азота и инертных газов. В про­мышленных городах, крупных животноводческих помещениях со­став воздуха может изменяться: в нем увеличивается концентра­ция диоксида углерода, появляются вредные примеси.


 




В выдыхаемом воздухе меньше кислорода (до 16 %) и больше диоксида углерода (до 4,5 %), а содержание азота немного боль­ше, чем в атмосферном (79,5 %). Это не означает, что азот уча­ствует в газообмене. Дело в том, что объем выдыхаемого воздуха несколько меньше, чем вдыхаемого. Часть кислорода в организ­ме, превращаясь в воду, удаляется с мочой, калом и потом, а тот же самый объем азота, попавший в легкие, распределяется в меньшем объеме воздуха.

Если выдыхаемый воздух разделить на порции, то окажется, что их состав будет изменяться от первой порции к последней. Первые порции выдыхаемого воздуха будут похожи на атмосфер­ный, это воздух из воздухоносных путей, где не совершается га­зообмен. В последующих порциях постепенно уменьшается со­держание кислорода и увеличивается диоксида углерода. Послед­ние же порции уже содержат 14 % кислорода, 5,5 — углекислого газа, 80,5 % азота и инертных газов. Состав выдыхаемого воздуха подобен альвеолярному.

Альвеолярный воздух является как бы внутренней газовой средой организма, и от его состава зависит газообмен между аль­веолами легких и кровью. В состоянии покоя состав альвеоляр­ного воздуха мало зависит от фазы дыхания, поэтому газообмен между альвеолярным воздухом и кровью совершается непрерыв­но—и при вдохе, и при выдохе. Это обстоятельство играет боль­шую роль в механизмах регуляции внешнего дыхания. Собствен­но говоря, значение внешнего дыхания и заключается в поддер­жании постоянного газового состава альвеолярного воздуха, что составляет основу постоянного содержания кислорода и диокси­да углерода в артериальной крови. Изменения в содержании га­зов в артериальной крови имеют ключевое значение в регуляции внешнего дыхания.

Состав альвеолярного воздуха зависит только от существенных изменений дыхательных движений. Так, при задержке дыхания (апноэ) или удушении (асфиксия) в альвеолярном воздухе накап­ливается диоксид углерода и уменьшается содержание кислорода, а при одышке (гиперпноэ, гипервентиляция легких), напротив, уровень кислорода увеличивается, а диоксида углерода уменьша­ется. И в том и в другом случае изменения в частоте или глубине дыхания сказываются на газовом составе крови.

В легочные капилляры поступает венозная кровь из сосудов малого круга кровообращения. По сосудам большого круга крово­обращения (бронхиальная артерия) артериальная кровь поступает для питания легочной ткани. Из альвеолярного воздуха кислород переходит в венозную кровь, а диоксид углерода — из венозной кро­ви в альвеолярный воздух. Кислород из альвеолярного воздуха сначала растворяется в сурфактанте, затем диффундирует через эндотелиальные клетки альвеол, две основные мембраны, аль­веолярную и сосудистую, и через эндотелиальные клетки крове-


носных капилляров поступает в кровь. Диоксид углерода дви­жется в противоположном направлении. Площадь соприкоснове­ния легочных капилляров со стенкой альвеол велика. Так, у овец общая поверхность альвеол, где происходит газообмен, в 100 раз и более превышает поверхность тела.

Газообмен между альвеолярным воздухом и кровью происходит по физическим законам осмоса и диффузии, т. е. газы переходят через полупроницаемые мембраны из области более высокого дав­ления в область более низкого давления. Активный транспорт га­зов через мембраны не обнаружен.

Давление одного газа в смеси газов называется парциаль­ным. Оно зависит от общего давления и концентрации данного газа и показывает, какая часть давления приходится на тот или иной газ. Например, если при атмосферном давлении 760 мм рт. ст. содержание кислорода составляет 20,9 %, то парциальное давле­ние кислорода будет равно 158,9 мм рт. ст., а парциальное давление диоксида углерода, если его содержится 0,03 %, — 0,22 мм рт. ст. При более высоком атмосферном давлении парциальное давление кислорода и диоксида углерода повышается, а в высокогорных местностях — понижается.

Парциальное давление газов в альвеолярном воздухе ниже, чем в атмосферном, из-за того, что в альвеолах присутствуют водя­ные пары. В среднем давление водяных паров при нормальной температуре тела около 47 мм рт. ст., поэтому на долю других га­зов приходится меньшее давление. Так, если атмосферное давле­ние 760 мм рт. ст., то давление в альвеолах будет на 47 мм меньше, т. е. составит 713 мм рт. ст. Тогда парциальное давление кислорода будет равно 100 мм рт. ст., углекислого газа — 40, а азота вместе с инертными газами — 573 мм рт. ст.

В крови растворенные газы создают парциальное давление, или напряжение (для воздушной смеси обычно используют по­нятие «парциальное давление», а для жидкостей — «напряжение газов»). Оно зависит от общего давления крови и содержания в ней данного газа.

Венозная кровь, поступающая в легкие, содержит 12 об.% кисло­рода (т. е. 12 мл кислорода в 100 мл крови), 55...58 — диоксида угле­рода и около 1 об.% азота. При том уровне гидростатического давле­ния крови, которое имеется в капиллярах, примыкающих к альве­олам, напряжение кислорода составляет 40 мм рт. ст., а диоксида уг­лерода — 46 мм рт. ст. Таким образом, между альвеолярным воздухом и венозной кровью создаются условия, при которых кислород из аль­веол под давлением 100 мм рт. ст. диффундирует в кровь, где его давление 40 мм рт. ст. (рис. 7.6). Одновременно диоксид углерода из крови под давлением 46 мм рт. ст. диффундирует в альвеолярный воздух, где его давление 40 мм рт. ст. Каждый газ перемещается из одной области в другую только под воздействием собственного дав­ления, независимо один от другого, как бы в пустоту.


 




Альвеола легкого Р0 = 102 мм рт.ст. Рсо =40 мм рт.ст.
Р0 =40 мм рт.ст. Рсо =47 мм рт.ст.

Р0 =95 мм рт.ст.

В

А ^ В

Рсо=40мм рт.ст.

Рис. 7.6. Обмен газов между альвеолярным возду­хом, кровью и тканями:

А — артериальная кровь; В — венозная кровь; стрелки показывают направление тока крови

Большое значение в газообмене имеет процесс растворения га­зов в крови. Коэффициент растворимости кислорода при темпе­ратуре тела составляет 0,022, диоксида углерода —0,5116, а азо­та — 0,011. Поскольку азот и инертные газы при обычных колеба­ниях атмосферного давления в крови не растворяются, то, несмот­ря на высокое парциальное давление, они не попадают в кровь.

Растворимость газов в крови увеличивается при повышении барометрического давления. Поэтому для лучшей насыщаемости крови кислородом за счет увеличения растворения его в плазме крови пациента помещают в камеру, где создается повышенное давление воздуха. Такой метод лечения называется гипербаричес­кой оксигенацией. Однако при этом азот также может раство­ряться в крови.

Аналогичная ситуация создается при глубоководных погруже­ниях. Опасность заключается в том, что при быстром снижении атмосферного давления до нормального уровня азот из растворен­ного состояния переходит в газообразное и кровь «вскипает» пу­зырьками азота, что может привести к тяжелой патологии. Поэто­му при поднятии водолаза с глубины на поверхность и при выве­дении пациента из барометрической камеры необходимо давление снижать постепенно. Тогда и азот постепенно выводится из кро­ви, не превращаясь в пузырьки.



Поделиться:


Последнее изменение этой страницы: 2016-12-16; просмотров: 289; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.220.120 (0.018 с.)