Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Транспорт газов кровью, газообмен в тканях

Поиск

Транспорт кислорода кровью. Кислород транспортируется кро­вью в двух формах — в растворенном виде и в соединении с гемо­глобином. В плазме артериальной крови содержится очень не­большое количество физически растворенного кислорода, всего


0,3 об.%, т. е. 0,3 мл кислорода в 100 мл крови. Основная же часть кислорода вступает в непрочное соединение с гемоглобином эритроцитов, образуя оксигемоглобин. Насыщение крови кис­лородом называется оксигенацией или артериализацией крови. Кровь, оттекающая от легких по легочным венам, имеет такой же газовый состав, что и артериальная кровь в большом круге кро­вообращения.

Количество кислорода, находящееся в 100 мл крови при усло­вии полного перехода гемоглобина в оксигемоглобин, называется кислородной емкостью крови. Эта величина помимо парциального давления кислорода зависит от содержания гемоглобина в крови. Известно, что 1 г гемоглобина может в среднем связать 1,34 мл кис­лорода. Следовательно, зная уровень содержания в крови гемогло­бина, можно вычислить кислородную емкость крови. Так, у лоша­дей при содержании гемоглобина в крови около 14 г/100 мл кис­лородная емкость крови составляет (1,34 • 14) около 19 об.%, у круп­ного рогатого скота при уровне гемоглобина 10... 12 г/100 мл — около 13...16 об.%. Пересчитав содержание кислорода в общем объеме крови, оказывается, что его запаса хватит лишь на З...4мин при условии, если он не будет поступать из воздуха.

На уровне моря при соответственных колебаниях атмосфер­ного давления и парциального давления кислорода в альвео­лярном воздухе гемоглобин практически полностью насыщает­ся кислородом. В условиях высокогорья, где атмосферное дав­ление низкое, снижается парциальное давление кислорода и уменьшается кислородная емкость крови. На содержание кис­лорода в крови также влияет температура крови: с повышением температуры тела снижается кислородная насыщенность крови. Высокое содержание в крови водородных ионов и диоксида углерода способствует отщеплению кислорода от оксигемогло-бина при прохождении крови через капилляры большого круга кровообращения.

Обмен газов между кровью и тканями совершается так же, как и обмен газов между кровью и альвеолярным воздухом — по законам диффузии и осмоса. Поступающая сюда артериаль­ная кровь насыщена кислородом, его напряжение составляет 100 мм рт. ст. В тканевой жидкости напряжение кислорода со­ставляет 20...37 мм рт. ст., а в клетках, которые потребляют кислород, его уровень падает до 0. Поэтому оксигемоглобин отщепляет кислород, который переходит сначала в тканевую жидкость, а затем в клетки тканей.

В процессе тканевого дыхания из клеток выделяется диоксид углерода. Он сначала растворяется в тканевой жидкости и создает там напряжение около 60...70 мм рт. ст., что выше, чем в крови (40 мм рт. ст.). Градиент напряжения кислорода в тканевой жид­кости и крови является причиной диффузии диоксида углерода из тканевой жидкости в кровь.


 



20 — 3389



Транспорт диоксида углерода кровью. Диоксид углерода транс­портируется в трех формах: в растворенном виде, в соединении с гемоглобином (карбогемоглобин) и в виде бикарбонатов.

Поступающий из тканей диоксид углерода незначительно ра­створяется в плазме крови —до 2,5об.%; его растворимость не­много выше, чем у кислорода. Из плазмы диоксид углерода про­никает в эритроциты и вытесняет из оксигемоглобина кислород. Оксигемоглобин превращается в восстановленнный, или редуци­рованный, гемоглобин. Присутствующий в эритроцитах фермент4 карбоангидраза ускоряет соединение диоксида углерода с водой и образование угольной кислоты — Н2С03. Эта кислота нестойкая, она диссоциирует на Н+ и HCOJ.

Поскольку мембрана эритроцита непроницаема для Н+, он ос­тается в эритроцитах, а НС03 переходит в плазму крови, где пре­вращается в бикарбонат натрия (NaHC03). Часть диоксида углеро­да в эритроцитах соединяется с гемоглобином, образуя карбогемо­глобин, а с катионами калия — бикарбонат калия (КНС03).

В легочных альвеолах, где парциальное давление диоксида угле­рода ниже, чем в венозной крови, растворенный и освободившийся при диссоциации карбогемоглобина диоксид углерода диффунди­рует в альвеолярный воздух. Одновременно кислород переходит в кровь и связывается с редуцированным гемоглобином, образуя ок­сигемоглобин. Оксигемоглобин, являясь более сильной кислотой, чем угольная, вытесняет угольную кислоту из бикарбонатов ионы калия. Угольная кислота расщепляется до С02 и Н20 при участии карбоангидразы. Диоксид углерода переходит из эритроцитов в плазму крови и затем в альвеолярный воздух (см. рис. 7.6).

Несмотря на то что основная часть диоксида углерода присут­ствует в плазме крови в форме бикарбоната натрия, в альвеолярный воздух выделяется преимущественно диоксид углерода не из плаз­мы крови, а из эритроцитов. Дело в том, что только в эритроцитах имеется карбоангидраза, расщепляющая угольную кислоту. В плаз­ме крови карбоангидразы нет, поэтому бикарбонаты разрушают­ся очень медленно и диоксид углерода не успевает выйти в альвео­лярный воздух (по легочным капиллярам кровь проходит менее чем за 1 с). Таким образом, диоксид углерода находится в крови в трех формах: растворенной, в виде карбогемоглобина, бикарбона­тов, но через легкие удаляется только в одной форме — С02.

Не весь кислород из артериальной крови поступает в ткани, часть его переходит в венозную кровь. Отношение объема кисло­рода, поглощенного тканями, к содержанию его в артериальной крови называется коэффициентом утилизации кислорода. В услови­ях физиологического покоя он составляет около 40 %. При более высоком уровне метаболизма коэффициент утилизации кислорода увеличивается и уровень его в венозной крови падает.

Проходя через легкие, не весь диоксид углерода поступает в аль­веолярный воздух, часть его остается в крови и переходит в арте-


риальную кровь. Таким образом, если в венозной крови содержит­ся 58 об.% диоксида углерода, то в артериальной крови — 52 об.%. Наличие определенного уровня кислорода и особенно диоксида углерода в артериальной крови имеет огромное значение в про­цессах регуляции внешнего дыхания.

Тканевое (внутриклеточное) дыхание. Тканевое дыхание — это процесс биологического окисления в клетках и тканях ор­ганизма.

Биологическое окисление происходит в митохондриях. Внут­реннее пространство митохондрий окружено двумя мембрана­ми—наружной и внутренней. На внутренней мембране, имею­щей складчатое строение, сосредоточено большое количество ферментов. Поступающий в клетку кислород затрачивается на окисление жиров, углеводов и белков. При этом освобождается энергия в наиболее доступной для клеток форме, прежде всего в форме АТФ — аденозинтрифосфорной кислоты. Ведущее значе­ние в окислительных процессах имеют реакции дегидрирования (отдача водорода).

Синтез АТФ осуществляется при миграции электронов от субстрата к кислороду через цепь дыхательных ферментов (фла-виновые ферменты, цитохромы и др.) Освобождающаяся энер­гия накапливается в форме макроэргических соединений (на­пример, АТФ), а конечными продуктами реакций становятся вода и диоксид углерода.

Наряду с окислительным фосфорилированием кислород мо­жет использоваться в некоторых тканях по типу непосредствен­ного внедрения в окисляемое вещество. Такое окисление назы­вается микросомальным, ибо происходит в микросомах — вези­кулах, образованных мембранами эндоплазматического ретику-лума клетки.

Ткани и органы имеют разную потребность в кислороде: ин­тенсивнее поглощают кислород из крови головной мозг, особен­но кора больших полушарий, печень, сердце, почки. Меньше потребляют кислорода в состоянии покоя клетки крови, скелет­ные мышцы, селезенка. При нагрузке потребление кислорода воз­растает. Например, при тяжелой мышечной работе скелетные мышцы потребляют больше кислорода в 40 раз, сердечная мыш­ца — в 4 раза (в расчете на 1г ткани).

Даже в пределах одного органа потребление кислорода может резко отличаться. Например, в корковой части почек оно интен­сивнее, чем в мозговой части, в 20 раз. Это зависит от строения ткани, плотности распределения в ней кровеносных капилляров, регуляции кровотока, коэффициента утилизации кислорода и ряда других факторов. Следует помнить, что чем больше клетки будут потреблять кислорода, тем больше образуется продуктов об­мена — диоксида углерода и воды.


 



20*



7.4. РЕГУЛЯЦИЯ ДЫХАНИЯ

Главная биологическая функция дыхания — это обеспечение газообмена в тканях. Именно ради тканевого дыхания в процессе эволюции возникли и совершенствовались системы кровообраще­ния и внешнего дыхания. Доставка тканям кислорода, выведение водородных ионов и диоксида углерода должны точно соответ­ствовать потребностям тканей и организма в определенный пери­од их жизнедеятельности. В реализации этих процессов, их дина­мического равновесия участвуют сложные механизмы, включаю­щие регуляцию газового состава крови, регионального кровообра­щения и трофику тканей. В данной главе мы рассмотрим, каким образом организм поддерживает определенное содержание кисло­рода и диоксида углерода в крови, т. е. каким образом регулируют­ся дыхательные циклы, глубина и частота дыхания.

Внешнее дыхание регулируется нейрогуморальными механиз­мами. Еще в 1885 г. русский физиолог Н. А. Миславский обнару­жил в продолговатом мозге дыхательный центр и доказал нали­чие в нем двух отделов — центр вдоха и центр выдоха. Центробеж­ными (эфферентными) путями дыхательный центр связан с эф­фекторами — дыхательными мышцами. Афферентные, или сен­сорные, или центростремительные, импульсы поступают в дыха­тельный центр от различных экстеро- и интерорецепторов, а так­же от вышележащих отделов головного мозга. Таким образом, в виде довольно упрощенной общей схемы можно представить ти­пичную рефлекторную дугу, состоящую из рецепторов, афферент­ных путей, нервного центра, эфферентных путей и эффекторов — дыхательных мышц.

Дыхательный центр. Дыхательный центр — это совокупность нейронов, расположенных во всех отделах ЦНС и принимающих то или иное участие в регуляции дыхания. Главная часть, или как принято говорить, «ядро» дыхательного центра, находится, как доказал экспериментально Миславский, в продолговатом мозге, в области ретикулярной формации на дне четвертого моз­гового желудочка. Без этого отдела дыхание невозможно, по­вреждение продолговатого мозга приводит неминуемо к смерти из-за остановки дыхания.

Четкий морфологический раздел между центрами вдоха и вы­доха в продолговатом мозге отсутствует, но существует распреде­ление функций между нейронами: одни нейроны — инспиратор-ные — генерируют потенциалы действия, возбуждающие инспи-раторные мышцы, другие — экспираторные — возбуждают выды­хательные мышцы.

В инспираторных нейронах электрическая ак­тивность включается быстро, постепенно нарастает частота им-пульсации (до 70... 100 импульсов в 1 с) и резко падает к концу вдоха. Эта импульсация приводит к сокращению диафрагмы,


межреберных и других инспираторных мышц. «Выключение» инс­пираторных нейронов приводит к расслаблению инспираторных мышц и выдоху. Активность экспираторных нейро­нов при нормальном спокойном дыхании имеет меньшее зна­чение. Но при усиленном дыхании, особенно при форсированном выдохе, экспираторные нейроны определяют сокращение выды­хательных мышц.

Буль барный отдел дыхательного центра головного мозга обладает автоматией. Эта уникальная особенность дыха­тельного центра заключается в том, что его нейроны могут спонтанно, т. е. самопроизвольно, без каких-либо внешних воз­действий деполяризовываться, или разряжаться. Впервые спон­танные колебания электрической активности дыхательного центра обнаружил И. М. Сеченов. Природа автоматии дыхательного центра до сих пор не выяснена. Вероятно, она зависит от специ­фики обмена веществ нейронов этой области головного мозга и особой чувствительности инспираторных нейронов к окружаю­щей среде, составу цереброспинальной жидкости. Автоматия ды­хательного центра сохраняется после почти полной его деаффе-рентации, т. е. после прекращения воздействий со стороны раз­личных рецепторов.

Благодаря автоматии дыхательный центр продолговатого мозга обеспечивает ритмичные чередования вдоха и выдоха и определя­ет частоту дыхания в условиях физиологического покоя.

Бульбарный отдел дыхательного центра является самым устой­чивым отделом ЦНС к действию наркотических препаратов. Даже при глубоком наркозе, когда рефлекторные реакции отсутствуют, самостоятельное дыхание сохраняется. В арсенале фармакологи­ческих препаратов имеются вещества, избирательно повышающие возбудимость дыхательного центра, — лобелии, цититон, воздей­ствующие на дыхательный центр рефлекторно, через рецепторы синокаротидной зоны.

И. П. Павлов говорил, что дыхательный центр, который рань­ше представляли величиной с булавочную головку, необычайно разросся: он спустился вниз в спинной мозг и поднялся вверх до коры больших полушарий.

Какую же роль играют другие отделы дыхательного центра? В спинном мозге находятся нейроны (мотонейроны), иннерви-руюшие дыхательные мышцы (рис. 7.7). Возбуждение к ним пе­редается от инспираторных и экспираторных нейронов продол­говатого мозга по нисходящим проводящим путям, лежащим в белом веществе спинного мозга. В отличие от бульварного цен­тра мотонейроны спинного мозга не обладают автоматией. По­этому после перерезки спинного мозга сразу за продолговатым дыхание останавливается, так как дыхательные мышцы не по­лучают команды к сокращениям. Если же спинной мозг перере­зать на уровне 4...5-го шейного позвонка, то самостоятельное


 





Центральное представительство анализаторов

Кора головного мозга

Сигнализация об обмене веществ

Промежуточный мозг

Средний мозг

Проприоцептивная сигнализация

Варолиев мост

Сигнализация с сосудистых рефлексогенных

Продолговатый /j* мозг '•**" (дыхательный центр)

Сигнализация с дыхательного аппарата (дыхательные пути, плевра, легкие)

Диафрагма

, Межреберные мышцы

Грудной отдел спинного мозга

Рис. 7.7. Схема организации центрального аппарата регуляции дыхания

дыхание сохраняется за счет сокращений диафрагмы, потому что центр диафрагмального нерва расположен в 3...5-M шейных сегментах спинного мозга.

Выше продолговатого мозга, прилегая к нему, находится ва­ролиев мост, в котором расположен «пневмотаксический центр». Он не обладает автоматией, но благодаря непрерывной активности обеспечивает периодическую деятельность дыхатель-


ного центра, увеличивает скорость развития инспираторной и эк­спираторной импульсаций в нейронах продолговатого мозга.

Средний мозг имеет большое значение в регуляции то­нуса поперечнополосатых мышц. Поэтому при сокращении раз­личных мышц афферентная импульсация от них поступает в сред­ний мозг, который соответственно мышечной нагрузке изменяет характер дыхания. Средний мозг ответствен также за координацию дыхания с актами глотания, рвоты и отрыгивания. Во время глота­ния дыхание задерживается на фазе выдоха, надгортанник закрыва­ет вход в гортань. При рвоте, отрыгивании газов происходит «холос­той вдох» — вдох при закрытой гортани. При этом сильно снижает­ся внутриплевральное давление, что и способствует поступлению содержимого из желудка в грудную часть пищевода.

Гипоталамус — отдел промежуточного мозга. Значение гипоталамуса в регуляции дыхания заключается в том, что в нем содержатся центры, контролирующие все виды обмена веществ (белковый, жировой, углеводный, минеральный), и центр тепло-регуляции. Поэтому усиление обмена веществ, повышение темпе­ратуры тела ведут к усилению дыхания. Например, при повыше­нии температуры тела дыхание учащается, что способствует уве­личению отдачи теплоты вместе с выдыхаемым воздухом и пре­дохраняет организм от перегревания (тепловая одышка).

Гипоталамус принимает участие в изменении характера ды­
хания при болевых раздражениях, при различных поведенчес­
ких актах (прием корма, обнюхивание, спаривание и др.). По­
мимо регуляции частоты и глубины дыхания гипоталамус через
вегетативную нервную систему регулирует просвет бронхиол,
спадение нефункционирующих альвеол, степень расширения
легочных сосудов, проницаемость легочного эпителия и стенок
капилляров. /

Многогранно значение коры больших полушарий головного мозга в регуляции дыхания. В коре располо­жены центральные отделы всех анализаторов, информирующих как о внешних воздействиях, так и о состоянии внутренней среды организма. Поэтому наиболее тонкое приспособление дыхания к сиюминутным потребностям организма осуществляется при обя­зательном участии высших отделов нервной системы.

Особое значение имеет кора больших полушарий при мышеч­ной работе. Известно, что учащение дыхания начинается за не­сколько секунд до начала работы, сразу после команды «пригото­виться». Аналогичное явление наблюдается у спортивных лоша­дей наряду с тахикардией. Причиной подобных «опережающих» реакций у людей и животных являются выработавшиеся в резуль­тате повторных тренировок условные рефлексы. Только влиянием коры больших полушарий можно объяснить произвольные, воле­вые изменения ритма, частоты и глубины дыхания. Человек может произвольно задержать дыхание на несколько секунд или усилить


его. Несомненна роль коры в изменении паттерна дыхания во вре­мя подачи голоса, при нырянии, обнюхивании.

Итак, в регуляции внешнего дыхания участвует дыхательный центр. Ядро этого центра, находящееся в продолговатом мозге, посылает ритмичные импульсы через спинной мозг к дыхатель­ным мышцам. Сам же бульварный отдел дыхательного центра на­ходится под постоянным воздействием со стороны вышележащих отделов ЦНС и различных рецепторов — пульмональных, сосу­дистых, мышечных и др.

Значение рецепторов легких в регуляции дыхания. В легких име­ются три группы рецепторов: растяжения и спадения; ирритантные; юкстакапиллярные.

Рецепторы растяжения расположены между глад­кими мышцами в воздухоносных путях — вокруг трахеи, бронхов и бронхиол, а в альвеолах и плевре отсутствуют. Растяжение легких при вдохе вызывает возбуждение механорецепторов. Воз­никающие потенциалы действия передаются по центростреми­тельным волокнам блуждающего нерва в продолговатый мозг. К концу вдоха частота импульсации нарастает от 30 до 100 им­пульсов в 1 с и становится пессимальной, вызывая торможение центра вдоха. Начинается выдох. Рецепторы спадения легких изучены недостаточно. Возможно, при спокойном дыхании их значение невелико.

Рефлексы с механорецепторов легких названы по имени от­крывших их ученых — рефлексы Геринга — Брейера. Назначение этих рефлексов заключается в следующем: информировать дыха­тельный центр о состоянии легких, их наполненности воздухом и в соответствии с этим регулировать последовательность вдоха и выдоха, ограничивать чрезмерное растяжение легких при вдохе или спадение легких при выдохе. У новорожденных рефлексы с механорецепторов легких играют большую роль; с возрастом зна­чение их уменьшается.

Рис. 7.8. Влияние двусторонней пере резки блуждающего нерва на дыхание /—до перерезки; //■
- после перерезки

Таким образом, значение блуж­дающего нерва в регуляции дыха­ния заключается в передаче аф­ферентных импульсов от механо­рецепторов легких в дыхатель­ный центр. У животных после перерезки вагуса информация от легких не попадает в продолгова­тый мозг, поэтому дыхание ста­новится медленным, с коротким вдохом и очень продолжитель­ным выдохом (рис. 7.8). При раз­дражении вагуса наблюдается за­держка дыхания в зависимости от того, в какую фазу дыхательного


 

 

цикла действует раздражение. Если раздражение поступает во вре­мя вдоха, то вдох преждевременно прекращается и сменяется вы­дохом, а если совпадает с фазой выдоха, то, наоборот, выдох сме­няется вдохом (рис. 7.9).

Ирритантные рецепторы расположены в эпите­лиальном и субэпителиальном слоях всех воздухоносных путей. Они раздражаются при попадании в воздухоносные пути пыли, ядовитых газов, а также при достаточно больших изменениях объема легких. Некоторая часть ирритантных рецепторов возбуж­дается при обычных вдохах и выдохах. Рефлексы с ирритантных рецепторов носят защитный характер — чихание, кашель, глубо­кий вдох («вздох»). Центры данных рефлексов расположены в продолговатом мозге.

Юкстакапиллярные рецепторы (юкста — вок­руг) находятся вблизи капилляров малого круга кровообраще­ния. По функциям они сходны с рецепторами спадения, для них раздражителем является увеличение интерстициального простран­ства легких, например при отеке. Раздражение юкстакапилляр-ных рецепторов вызывает одышку. Возможно, при интенсивной мышечной работе кровяное давление в легочных сосудах повы­шается, это увеличивает объем интерстициальной жидкости и стимулирует активность юкстакапиллярных рецепторов. Раздра­жителем пульмональных рецепторов может быть гистамин, синтезирующийся в базофилах и тучных клетках. В легких этих клеток довольно много, и при аллергических заболеваниях они выделяют гистамин в таком количестве, что это приводит к оте­ку и одышке.

Значение рецепторов дыхательных мышц. В дыхательных мыш­цах имеются рецепторы растяжения — мышечные веретена, сухо­жильные рецепторы. Особенно велика плотность их размещения в межреберных мышцах и мышцах стенок живота. Механорецепто-ры дыхательных мышц возбуждаются при их сокращении или рас­тяжении при вдохе или выдохе. По принципу обратной связи они регулируют возбуждение мотонейронов спинного мозга в зависи­мости от их исходной длины и сопротивления, которое они встре-


 




чают при сокращении. Сильное раздражение механорецепторов грудной клетки (например, при ее сжатии) вызывает торможение инспираторной деятельности дыхательного центра.

Значение хеморецепторов в регуляции дыхания. Исключительно важное значение в регуляции внешнего дыхания имеет газовый состав артериальной крови. Биологическая целесообразность это­го вполне понятна, поскольку от содержания кислорода и диок­сида углерода в артериальной крови зависит обмен газов между кровью и тканями. Давно стали классикой опыты Фредерика (1890) с перекрестным кровообращением, когда артериальная кровь от одной собаки поступала в кровь другой, а венозная кровь от го­ловы второй собаки — в венозную кровь первой собаки (рис. 7.10). Если пережать трахею и тем самым остановить дыхание первой собаки, то ее кровь с недостаточным содержанием кислорода и из­быточным диоксида углерода омывает головной мозг второй соба­ки. Дыхательный центр второй собаки усиливает дыхание (гипер-пноэ), и в ее крови снижается концентрация диоксида углерода и урежается дыхание вплоть до остановки (апноэ).

Благодаря опытам Фредерика стало очевидным, что дыха­тельный центр чувствителен к уровню содержания газов в артери­альной крови. Возросшая концентрация диоксида углерода (гипер-капния) и водородных ионов в крови вызывает учащение дыха­ния, вследствие чего диоксид углерода выделяется с выдыхаемым воздухом и его концентрация в крови восстанавливается. Сниже­ние содержания диоксида углерода в крови (гипокапния), напро­тив, вызывает урежение дыхания или его остановку до тех пор, пока в крови концентрация диоксида углерода снова не достигнет нормальной величины (нормокапния).

Концентрация кислорода в крови также влияет на возбуди­мость дыхательного центра, но в меньшей мере, чем диоксида угле­рода. Это связано с тем, что при обычных колебаниях атмосферно­го давления, даже на высотах до 2000 м над уровнем моря, почти весь гемоглобин превращается в оксигемоглобин, поэтому пар­циальное давление кислорода в артериальной крови всегда выше, чем в тканевой жидкости, и ткани получают, во всяком случае в

состоянии физиологического по­коя, достаточно кислорода. При значительном снижении парци­ального давления кислорода в воздухе уменьшается содержание кислорода в крови (гипоксемия) и в тканях (гипоксия), в результа­те этого возбудимость дыхатель­ного центра повышается и дыха­ние учащается.

Снижение концентрации кис-Рис. 7.10. Перекрестное кровообращение лорода В крови (гипоксемия) МО-


жет произойти и вследствие более интенсивного потребления его тканями. В этом случае возможно развитие кислородной недоста­точности, что, в свою очередь, вызовет усиление внешнего дыха­ния. При повышении содержания кислорода в крови, например при вдыхании газовой смеси с высоким содержанием кислорода или при нахождении в барокамере под высоким атмосферном дав­лении, вентиляция легких уменьшается за счет угнетения дыха­тельного центра.

Мы рассмотрели в отдельности значение содержания кислорода и диоксида углерода в артериальной крови, т. е. аналитически. Од­нако в действительности оба газа влияют на дыхательный центр одновременно. Установлено, что гипоксия повышает чувствитель­ность дыхательного центра к повышенному содержанию диоксида углерода, и усиление дыхания в этих условиях является интеграль­ной реакцией дыхательного центра в ответ на изменение газового состава крови. Так, при физической работе в мышцы поступает больше кислорода из притекающей крови, увеличивается коэффи­циент утилизации кислорода, а его концентрация в крови снижает­ся. Одновременно в результате повышения метаболизма из мышц в кровь поступает больше углекислоты и органических кислот.

Велика роль сосудистых хеморецепторов при первом вдохе новорожденного. Снижение содержания кислорода в крови и уве­личение диоксида углерода во время родов, особенно после пере­жатия пуповины, является главнейшим раздражителем дыхатель­ного центра, что и вызывает первый вдох.

Если в течение 1 мин произвольно максимально усилить дыха­ние и вызвать этим гипервентиляцию легких, то заметно удлиня­ется дыхательная пауза между выдохом и последующим вдохом. Может наступить кратковременное апноэ — остановка дыхания на 1...2 мин. Без предшествующей гипервентиляции задержать дыха­ние можно лишь на 20...30 с. Подобную гипервентиляцию легких с последующим апноэ вызывают у себя ныряльщики — охотники за жемчугом или губкой. После длительных тренировок они оста­ются под водой до 4...5 мин.

Попробуем разобраться в механизмах апноэ после одышки. По­скольку при обычном спокойном дыхании кровь насыщена кисло­родом на 95 %, усиление дыхания не приводит к значительному увеличению концентрации кислорода в крови. На содержание же диоксида углерода гипервентиляция оказывает заметное влияние — уровень диоксида углерода снижается сначала в альвеолярном воз­духе, а затем в крови. Следовательно, апноэ после гипервентиляции легких связано с уменьшением концентрации углекислоты в крови. Дыхание восстановится, когда в крови снова накопится достаточ­ный, или пороговый, уровень диоксида углерода.

Если задержать дыхание на 20...30 с, то наступает неудержимое стремление вздохнуть и сделать несколько глубоких дыхательных движений. Следовательно, задержка ведет к гиперпноэ — усиле-


 




нию дыхания. Это также обусловлено накоплением в крови ди­оксида углерода, так как за 20...30 с концентрация кислорода в крови снизится незначительно, а диоксид углерода постоянно по­ступает в кровь из тканей.

Итак, диоксид углерода является главнейшим гуморальным раздражителем дыхательного центра. Изменение его концентра­ции в крови ведет к таким изменениям в частоте и глубине дыха­ния, которые восстанавливают постоянный уровень углекислоты в крови. При увеличении уровня диоксида углерода в крови проис­ходит стимуляция дыхательного центра и усиление дыхания, при снижении — уменьшение частоты и глубины дыхания. Поэтому столь эффективен метод искусственного дыхания «изо рта в рот», а в газовые смеси для искусственного дыхания обязательно добав­ляют диоксид углерода.

Где же находятся те датчики, или рецепторы, которые улавли­вают концентрацию газов в крови? Они расположены там, где не­обходим тщательный контроль за газовым составом внутренней среды организма. Такими участками являются сосудистые рефлек­согенные зоны каротидного синуса и аорты, а также центральные рефлексогенные зоны в продолговатом мозге.

Синокаротидная зона, или зона каротидного сину­са, имеет особо важное значение в отслеживании газового состава и рН крови. Она находится в области разветвления сонных артерий на наружные и внутренние ветви, откуда артериальная кровь на­правляется в головной мозг. Пороговая концентрация кислорода, углекислоты и водородных ионов для рецепторов синокаротидной зоны соответствует их уровню в крови при нормальных условиях в состоянии покоя. Небольшое возбуждение возникает в отдельных рецепторах при редком глубоком дыхании, когда концентрация га­зов в крови начинает немного изменяться. Чем сильнее изменяется газовый состав крови, тем большая частота импульсации возника­ет в хеморецепторах, стимулируя дыхательный центр.

Изменение дыхательных движений происходит не только при раздражении хеморецепторов аорты или каротидного синуса. Раз­дражение находящихся здесь же баро- или прессорецепторов при повышении артериального давления обычно ведет к замедлению дыхания, а при снижении артериального давления — к его усиле­нию. Однако при физической нагрузке повышение артериального давления не приводит к угнетению дыхания, а также к депрессор-ным рефлексам.

Центральные (медуллярные) хеморецепторы в продолговатом мозге чувствительны к уровню содержания диоксида углерода в цереброспинальной жидкости. Если артериальные хеморецепторы регулируют газовый состав артериальной крови, то центральные хеморецепторы держат под контролем газовый и кислотно-щелоч­ной гомеостаз жидкости, омывающей головной мозг, — наиболее уязвимую ткань организма. Хеморецепторы, чувствительные к из-


менению рН, диоксида углерода и кислорода, имеются также в ве­нозных сосудах и в различных тканях организма. Однако их значе­ние заключается не в регуляции внешнего дыхания, а в изменении регионального, или местного, кровотока.

Большой интерес представляют механизмы изменения ды­хания при физической работе: при большой нагрузке частота и сила дыхательных движений увеличиваются, что приводит к гипервентиляции легких. Что является причиной этого? Уси­ление тканевого дыхания в мышцах приводит к накоплению молочной кислоты до Ю0...200мг/100мл крови (вместо 15...24 в норме) и недостатку кислорода для окислительных процессов. Такое состояние называется кислородной задолжен­ностью. Молочная кислота, являясь более сильной кислотой, чем угольная, вытесняет из бикарбонатов крови диоксид углерода, в результате этого возникает гиперкапния, что усиливает возбуди­мость дыхательного центра.

Далее при мышечной работе возбуждаются различные рецепто­ры: проприорецепторы мышц и сухожилий, механорецепторы лег­ких и воздухоносных путей, хеморецепторы сосудистых рефлексо­генных зон, рецепторы сердца и др. От этих и других рецепторов афферентная импульсация также достигает дыхательного центра. При мышечной работе повышается тонус симпатического отдела нервной системы, увеличивается содержание катехоламинов в кро­ви, которые стимулируют дыхательный центр и рефлекторно, и не­посредственно. При мышечной работе увеличивается теплопродук­ция, что также ведет к усилению дыхания (тепловая одышка).

Раздражение различных экстерорецепторов приводит к обра­зованию условных рефлексов. Обстановка, в которой обычно совершается работа (ипподром, ландшафт, взнуздывание, появ­ление наездника, а также время суток), является комплексным стереотипом раздражения, подготавливающим лошадь к после­дующей работе. Наряду с различными поведенческими актами у животного заранее усиливается работа сердца, повышается арте­риальное давление, перестраивается дыхание и возникают другие вегетативные изменения.

В начале работы энергия мышцам поставляется за счет ана­эробных процессов. В дальнейшем этого оказывается недоста­точно и тогда возникает новое стационарное состояние («вто­рое дыхание»), при котором увеличивается вентиляция легких, систолический и минутный объем сердца, кровоток в работаю­щих мышцах.

Таким образом, регуляция дыхания включает два механизма: регуляцию внешнего дыхания, направленную на обеспечение оптимального содержания кислорода и диоксида углерода в крови, т. е. адекватного тканевому метаболизму, и регуляцию кровообра­щения, создающую наилучшие условия обмена газов между кро­вью и тканями.


 




В регуляции вдоха и выдоха большее значение имеют авто-матия дыхательного центра и афферентные импульсы от меха-норецепторов легких и дыхательных мышц, а в регуляции час­тоты и глубины дыхания — газовый состав крови, цереброспи­нальной жидкости и афферентные импульсы от хеморецепто-ров кровеносных сосудов, тканей и медуллярных (бульбарных) хеморецепторов.

ОСОБЕННОСТИ ДЫХАНИЯ У ПТИЦ

Особенности дыхания у птиц обусловлены их образом жизни — полетом и своеобразием анатомического строения дыхательных путей. Эти особенности свойственны всему классу птиц — как ле­тающих, так и нелетающих.

У птиц сильно развита грудная клетка, большая грудная кость, вместо реберных хрящей грудные костные ребра подвижно соеди­нены с позвоночными ребрами. Диафрагма у птиц редуцирована, поэтому не имеет большого значения в дыхании. Наружная поверх­ность легких вдавлена между ребрами и прочно срастается с ними. Свободная поверхность легких гладкая, покрыта плеврой.


Рис. 7.11. Органы дыхания птиц: 1 — ноздри; 2 — решетчатая кость; 3 — носовая полость; 4— синус; 5— нёбная шель; 6— щель горта­ни; 7—верхняя гортань; 8— тра­хея; 9— шейные воздухоносные мешки; 10— межключичный воз­духоносный мешок; 11 — подмышечный дивер­тикул; 12— ход в плечевую кость; 13— крани­альные грудные воздухоносные мешки; 14— легкие; 15— воздуховыводящий бронх каудаль-ных грудных воздухоносных мешков; 16— кау-дальные и грудные воздухоносные мешки; 17— воздухоносные брюшные мешки; 18— экто-бронх и брюшные мешки; 19— преддверие главного бронха с отверстиями во вторичные бронхи; 20— главные бронхи; 21 — нижняя (певчая) гортань; 22— глотка

 

Трахея входит в легкие, разветвляется на бронхи и бронхиолы. В бронхиолах происходит обмен газов с притекающей сюда веноз­ной кровью. Часть бронхов выходит из легких и заканчивается воздухоносными мешками —это тонкостенные образования, за­полненные воздухом (рис. 7.11). Они расположены между органа­ми, соединяются с бронхами, а некоторые из них тонкими трубоч­ками соединяются с во



Поделиться:


Последнее изменение этой страницы: 2016-12-16; просмотров: 843; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.53.7 (0.026 с.)