Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Глава 6 физиология кровообращенияСодержание книги
Поиск на нашем сайте
У всех позвоночных животных кровь циркулирует по замкнутой системе кровеносных сосудов, так как только при условии непрерывного движения она выполняет свои важнейшие транспортные функции. Система органов кровообращения схематично включает в себя следующие звенья. 1. Сердце — орган, работающий как насос; перекачивает кровь из венозного русла в артериальное и создает в начале артерий высокое гидростатическое давление. 2. Артериальные сосуды — по их руслу кровь течет от сердца и распределяется по всем органам и тканям организма. 3. Капиллярная сеть — здесь происходят обменные процессы между кровью и тканями. 4. Венозные и лимфатические сосуды — по ним кровь и лимфа от тканей и органов возвращаются обратно в сердце. Различают большой и малый круги кровообращения (рис. 6.1.). Большой круг начинает аорта из левого желудочка — самый крупный в организме артериальный сосуд. От аорты ответвляются артерии ко всем органам и тканям; состав артериальной крови одинаков во всех артериальных сосудах большого круга кровообращения. Внутри органов артерии разветвляются на средние и мелкие артерии, артериолы и капилляры. После прохождения через капиллярную сеть состав крови изменяется: уменьшается содержание кислорода и питательных веществ, увеличивается количество диоксида углерода и других продуктов обмена веществ и жизнедеятельности тканей. Такая кровь называется венозной, причем ее состав и свойства изменяются, что связано со спецификой и физиологической активностью органов. Венозные капилляры объединяются в венулы, затем сливаются в более крупные вены; вся венозная кровь собирается в переднюю и заднюю полые вены, впадающие в правое предсердие. В переднюю полую вену впадают грудной и шейный лимфатические протоки: венозная кровь вблизи правого предсердия смешивается с лимфой и ее состав усредняется, т. е. уже исчезают органные особенности.
Рис. 6.1. Схема кровообращения: 1 — аорта; 2 —левое предсердие; 3 — левый желудочек; 4 — печеночная артерия; 5 —сеть капилляров большого круга; 6— артерия кишечника; 7— воротная вена; 8— печеночная вена; 9— правый желудочек; 10— нижняя полая вена; 11 — правое предсердие; 12— верхняя полая вена; 13 — легочная артерия; 14— сеть капилляров малого круга; 15— одна из четырех легочных вен Большой круг кровообращения включает добавочные круги — шунтовой механизм сердца, почечный и печеночный круги (см. раздел 6.4). Малый, или легочный, круг начинает из правого желудочка легочная артерия — единственная в организме артерия, несущая венозную кровь в легкие. В легких легочная артерия разветвляется на артериолы и капилляры, где происходит освобождение крови от диоксида углерода и обогащение ее кислородом, т. е. происходит артериализа-ция крови. Артериальная кровь течет по легочным венулам и венам. Легочные вены — также единственные вены в организме, содержащие артериальную кровь, впадают несколькими стволами в левое предсердие. В кругах кровообращения кровь распределяется следующим образом: сердце в фазе^эаеслабления содержит около 7 % крови, малый круг кровообращения — 9, большой круг — 84 %. При этом следует учитывать, что в отдельных органах депонированная кровь, содержащаяся главным образом в капиллярах и венулах, составляет около половины от всего объема крови в организме. ФИЗИОЛОГИЯ СЕРДЦА Строение сердца. Сердце является полым мышечным органом. Изнутри полости сердца (предсердия и желудочки) выстланы эндокардом—внутренней оболочкой сердца. Снаружи мышечный слой (миокард) покрыт эпикардом — наружной оболочкой сердца. От органов грудной полости сердце отделено перикардом — сердечной сорочкой. Между эпикардом и перикардом находится перикардиальная полость, заполненная серозной жидкостью, предохраняющей сердце от трения с соседними органами. Кроме того, перикард ограничивает растяжение сердца во время заполнения его кровью. В сердце имеются два предсердия и два желудочка — левые и правые. Кровеносные сосуды, впадающие в предсердия, называ-
ются венами. В правое предсердие впадают передняя и задняя полые вены, а в левое предсердие — легочные вены. Из левого желудочка начинается аорта, из правого — легочная артерия. Левая и правая половины сердца сообщаются только в плодном периоде. У плода между предсердиями имеется овальное отверстие, через которое часть крови из правого предсердия попадает в левое. После рождения овальное отверстие закрывается и запустевает. Мышцы предсердий отделены от желудочков сухожильным кольцом, образующим атриовентрикулярную перегородку. В сердце имеются четыре клапана. Два из них — атриовентри-кулярные — находятся между предсердиями и желудочками. Левый атриовентрикулярный клапан имеет две соединительнотканные створки и называется двустворчатым, или митральным, правый атриовентрикулярный клапан — трехстворчатым. Еще два клапана — полулунные, или кармашковые, — находятся между левым желудочком и аортой (аортальный клапан), между правым желудочком и легочной артерией (пульмональный клапан). Клапаны обеспечивают одностороннее движение крови в сердце. Благодаря методам световой микроскопии выяснено, что мышечные волокна сердца, как и скелетные мышцы, имеют поперечнополосатую исчерченность вследствие чередования темных (анизотропных) и светлых (изотропных) участков, что связано с расположением в миофибриллах актиновых и миозино-вых протофибрилл. В отличие от скелетных мышц волокна миокарда короткие, прерываются на уровне вставочных дисков. Мембраны вставочных дисков пересекают миофибриллы на уровне Z-мембран, скрепляющих актиновые нити, и имеют складчатое строение, увеличивающее их поверхность в несколько раз. Миофибриллы обеспечивают сокращение и расслабление сердечной мышцы. Сарколемма сердечных мышечных волокон состоит из плазматической мембраны и покрывающей ее базальной мембраны, образованной мукополисахаридными нитями. Эти образования ответственны за клеточную проницаемость, генерацию и проведение электрических импульсов. В миокардиоцитах, как и в других клетках организма, имеются одно или несколько ядер, митохондрии, саркоплазматический ре-тикулум и другие внутриклеточные образования. В мембранах митохондрий осуществляются аэробные окислительные процессы и окислительное фосфорилирование. У животных с высокой частотой сердечных сокращений (400...500 ударов в 1 мин) в миокардиоцитах находится большое число митохондрий, у животных с более редкой частотой сердечных сокращений (до 100 ударов в 1 мин) митохондрии располагаются более редко и содержат меньшее число внутренних мембран. Система саркоплазматического ретикулума и Т-система мио-
Рис. 6.2. Схема проводящей системы сердца: 1 — верхняя и нижняя полые вены; 2— предсердия; 3— желудочки; 4 — папиллярные мышцы; 5 — синусный узел (Кейт — Флака); 6— атриовентрикулярный узел (Ашоф — Тавара); 7— пучок Гиса
кардиоцитов развиты слабее, чем в скелетных мышцах, но функции их совпадают: депонирование и выделение кальция в процессах сопряжения возбуждения и сокращения. Наряду с сократительными, или рабочими, мышечными волокнами в сердце имеются другие мышечные волокна — так называемые клетки проводящей системы, которые существенно отличаются деталями строения и функциями. Эти клетки либо цилиндрической, либо сильно вытянутой формы, содержат редкие, беспорядочно расположенные миофибриллы, слаборазвитую Т-систему, немногочисленные митохондрии, но имеют большое количество гликогена в форме гранул. На основании перечисленных морфологических признаков ясно, что клетки проводящей системы не способны к выполнению сократительных функций, а предназначены для генерации и распространения по сердцу электрических импульсов. Проводящая система сердца (рис. 6.2.) представляет собой скопления вышеупомянутых атипичных мышечных клеток, образующих узлы, пучки и волокна. Ведущая часть проводящей системы сердца — синоатриальный, или синусный, узел, или узел Кейт — Флака, — находится в правом предсердии, между правым сердечным ушком и устьем полых вен, поверхностно под эпикардом. Второй узел — атриовентрикулярный, или узел Ашоф — Та-нара, — расположен в перегородке между предсердиями и желудочками, ближе к правому предсердию. От него отходит короткий толстый пучок Гиса, прободающий сухожильную перегородку между предсердиями и желудочками. Войдя в межжелудочковую перегородку, пучок Гиса расходится на два ствола — ножки пучка 1 иса, идущие соответственно в мышцы правого и левого желудочков. Ножки пучка Гиса разветвляются на более тонкие волокна — иолокна Пуркинье, контактирующие с сократительными волокна-м и сердечной мышцы. Кровоснабжение и иннервация сердца. Сердце снабжается кро-ш.ю через две коронарные артерии — первые артерии, которые отче щят от дуги аорты сразу за полулунными клапанами. Левая коронарная артерия разветвляется в левой половине сердца, а пра-
вая — в обоих половинах сердца и в его перегородке. Хотя бассейн правой коронарной артерии больше, чем левой, но объем крови, приходящей по левой коронарной артерии, больше из-за более сильно развитых мышц левого желудочка. Количество капилляров на единицу массы сердечной мышцы в два раза больше, чем в скелетных мышцах, и возрастает при рабочей гипертрофии сердца. Венозная кровь оттекает от сердца главным образом через коронарный синус и через мелкие вены (вены Тебезия) в полости правого и левого желудочков. Существенная особенность кровообращения в сердце заключается в том, что во время систолы кровеносные сосуды сдавливаются и приток крови к миокарду, особенно к желудочкам, резко снижается. Во время диастолы кровоток по сосудам сердца возобновляется. Все нервы, подходящие к сердцу, имеют смешанное вагосим-патическое происхождение. Парасимпатические нервы иннервируют предсердия и главным образом узлы проводящей системы сердца. Симпатические нервы распределяются в основном в желудочках и в меньшей степени в предсердиях и иннервируют сократительные мышечные волокна. Коронарные артерии и ар-териолы также иннервируются симпатическими и парасимпатическими нервами. В составе сердечных нервов имеются не только эфферентные нервы, передающие информацию из центральной нервной системы в сердце, но и афферентные волокна. Они начинаются с чувствительных нервных окончаний в предсердиях и желудочках, отвечая на напряжение и растяжение сердечной мышцы, а также участвуют в проведении болевой чувствительности от сердца в высшие отделы головного мозга. Особенности обмена веществ в сердце. Образование энергии в сердце происходит в процессе окисления питательных веществ, главным образом глюкозы, жирных кислот, особенно уксусной и ацетоуксусной кислот и других, в цикле трикарбоновых кислот (цикл Кребса). Для того чтобы освободившаяся в аэробных условиях энергия могла использоваться сердцем, она должна быть превращена в энергию макроэргических фосфорных соединений, главным образом АТФ, АДФ и креатинфосфат (КФ). Эти процессы называются окислительным фосфорилиррванием, благодаря им достигается расчленение аэробных и анаэробных процессов во времени, а также процессов освобождения и потребления энергии. Таким образом, в целом энергетический обмен в сердечной мышце не отличается от такового в других мышцах. Специфическая особенность работы сердца заключается в непрерывных ритмических сокращениях и расслаблениях. Во время каждого сокращения сердце испытывает кислородную недостаточность, так как сокращающаяся сердечная мышца сдавливает коронарные сосуды и приток крови к миокарду уменьшается. В этот период в сердце преобладают анаэробные процессы: распад АТФ и КФ, накопление продуктов обмена, главным образом молочной и фосфорной кислот. Во время расслабления сердечная мышца получает достаточный приток крови и в ней преобладают аэробные процессы: окисляется молочная кислота, а фосфорная кислота используется для ресинтеза макроэргов. Поразительна скорость, с которой происходят смены биохимических процессов в сердце. Ранее считали, что концентрация в сердце АТФ, АДФ, КФ и других макроэргов постоянна и мало зависит от работы сердца. Последние исследования с применением цитохимических методов показали, что во время каждого сердечного цикла происходят значительные изменения ультраструктуры миокарда. Меняется количество, объем и структура митохондрий, количество гранул гликогена, концентрация макроэргических фосфорных соединений, активность ферментов. Если во время систолы в миокарде уменьшается концентрация АТФ, АДФ и КФ, то в диастолу осуществляется их ресинтез и восстановление общего количества. Следует также учесть, что сердце способно извлекать из крови больше кислорода, чем скелетные мышцы, а также эффективнее использовать кислород миоглобина и регулировать объем крови, проходящей через коронарные сосуды. Чем интенсивнее работа сердца, тем больше крови протекает через миокард и больше кислорода затрачивается сердцем, увеличивается коэффициент утилизации кислорода. Эндокринная функция сердца. Хотя сердце и не является железой внутренней секреции, но в нем образуется натрийуретический гормон, участвующий в регуляции уровня ионов натрия в крови. При повышенном кровяном давлении этот гормон увеличивает выведение почками натрия и воды, тем самым уменьшая объем крови в организме и снижая ее давление. СВОЙСТВА СЕРДЕЧНОЙ МЫШЦЫ Основными свойствами сердечной мышцы, определяющими непрерывное ритмическое сокращение сердца в течение всей жизни организма, являются автоматия, возбудимость, проводимость и сократимость. Автоматия. Под автоматией понимают способность сердечной мышцы ритмически возбуждаться и сокращаться без каких-иибо внешних по отношению к сердцу воздействий, т.е. без участия нервной системы и гуморальных факторов, доставляемых к сердцу кровью.
16 -3389 Доказательством автоматии сердца послужили следующие наблюдения и эксперименты. Изолированное сердце, т. е. выведенное из организма и помещенное в питательный раствор, продолжает самопроизвольно сокращаться. Даже разрезанное на кусочки, оно сокращается в том же ритме, что и у здорового животного. Если у животного денер-вировать сердце, т. е. перерезать все нервные стволы, подходящие к сердцу, оно продолжает сокращаться. На способности работать без воздействия внешних раздражителей основана пересадка сердца. Оживление остановившегося сердца достигается восстановлением спонтанной активности сердца, его автоматии. В чем причина такого уникального свойства сердца? У большинства беспозвоночных животных автоматия связана с нервными ганглиями, расположенными вблизи сердца, т. е. имеет ней-рогенную природу. У всех же позвоночных животных и у части беспозвоночных автоматия сердца обусловлена не нервными, а мышечными клетками, которые самопроизвольно деполяризуются после каждого потенциала действия. Эти клетки называются пейсмекерами, или «задающими сердечный ритм», или водителями сердечного ритма. Такая теория автоматии сердца называется миогенной. Способностью к автоматии обладают атипичные мышечные клетки, составляющие проводящую систему сердца. Ведущую роль в автоматии играет синусный узел. Он обладает наиболее высокой активностью по сравнению с другими участками проводящей системы, частота импульсации в нем наиболее высокая, и он задает определенную частоту сокращения сердца в состоянии физиологического покоя. Такой ритм обычно называют синусным ритмом, а синусный узел — водителем ритма сердца первого порядка. Если отделить лигатурой синусный узел от предсердий (опыт Станниуса), то обычно сердце останавливается. Однако через некоторое время оно снова начинает сокращаться, но в более редком ритме. Этот ритм «задает» следующий узел проводящей системы — атриовентрикулярный. Более редкие сокращения сердца обусловлены тем, что возбудимость атриовентрикулярного узла меньше, чем синусного. Этот узел называют водителем ритма сердца второго порядка. Если же и атриовентрикулярный узел перестает генерировать возбуждение, то водителем ритма сердца становится пучок Гиса, но его возбудимость еще меньше; пучок Гиса называют водителем ритма третьего порядка. В обычных условиях атриовентрикулярный узел и пучок Гиса только проводят возбуждение от синусного узла. Их собственная автоматия как бы подавлена главным пейсмекером, и только при развитии патологического процесса, прекращающего функцию синусного узла, свой ритм навязывают нижележащие узлы. Они являются латентными, или скрытыми, или потенциальными пейсмекерами. Какова природа автоматии? Методами электрофизиологии установлено, что потенциал действия (ПД) клеток проводящей системы отличается от других мышечных и нервных клеток. Во время расслабления сердца — диастолы — начинается медленно нарастающая деполяризация мембраны, которая затем переходит в фазу быстрой деполяризации (рис. 6.3, А). Фаза реполяризации в пейс-мекерах довольно продолжительная, в пейсмекерах синусного узла она имеет выраженное плато вместо пика потенциала. Сразу после возвращения мембранного потенциала к уровню потенциала покоя снова начинается медленная диастолическая деполяризация мембраны, и когда разность потенциалов между наружной и внутренней поверхностями мембраны уменьшается до определенного критического, или порогового уровня, внезапно возникает новый крутой сдвиг электрического заряда клетки, что свидетельствует о ее возбуждении.
Интервал между двумя ПД зависит от длительности медленной диастолической деполяризации, ее величины и порогового уровня сердечного ПД. Если скорость деполяризации уменыиает-
16* ся (например, при охлаждении синусного узла), то пороговый уровень деполяризации наступает позднее, частота ПД и сокращений сердца уменьшаются. При возрастании скорости деполяризации мембраны, напротив, пороговый уровень деполяризации возникает раньше и это приводит к учащению возбуждения сердца. Отчасти этим объясняется учащение сердечной деятельности при повышении температуры тела. Медленная диастолическая деполяризация обусловлена особенностями ионной проницаемости мембраны пейсмекеров. Как и в других клетках, электрические процессы в мембранах миокарда являются следствием пассивного и активного перемещения ионов натрия и калия через тончайшие каналы (поры) в мембране, проницаемость которых регулируется заряженными частицами — ионами Са2+ или Мп2. Медленная диастолическая деполяризация объясняется тем, что во время реполяризации часть натриевых каналов не инактивируется и осуществляется медленный вход сначала натрия, а затем кальция в мембрану. Когда количество ионов натрия, проникших в клетку, снизит мембранный потенциал до критического уровня, наступает быстрая фаза деполяризации и ПД достигает своего максимального уровня. В теории об автоматии пейсмекеров еще много неясного, и раскрытие тончайших механизмов электрических процессов, происходящих в сердце, — актуальная задача современной кардиологии. Возбудимость. Возбудимость — свойство сердечной мышцы переходить в состояние возбуждения под влиянием различных раздражителей. В естественных условиях раздражителем является ПД, возникающий в синусном узле и распространяющийся по проводящей системе сердца до рабочих кардиомиоцитов. При некоторых заболеваниях сердца раздражение может возникать в других его участках, которые генерируют собственные ПД, и тогда сердечный ритм будет нарушен из-за взаимодействия разных по частоте и фазе ПД. В экспериментах на животных в качестве раздражителей могут быть использованы механические, термические или химические воздействия, если их величина превышает порог возбудимости сердца. При болезнях сердца, сопровождающихся нарушением сердечного ритма, больным вживляют в сердце миниатюрные электроды, питающиеся от батареек. Импульсы тока подаются непосредственно на сердце и возбуждают в нем ритмические импульсы. При внезапной остановке сердца или нарушении синхронизации отдельных мышечных волокон возможно воздействие на сердце прямо через кожный покров сильным коротким электрическим разрядом напряжением в несколько кВт. Это вызывает одновременное возбуждение всех мышечных волокон, после чего восстанавливается работа сердца. Во время возбуждения в сердце возникают физико-химические, морфологические и биохимические изменения, которые приводят к сокращению рабочего миокарда. Одними из ранних признаков возбуждения являются активация натриевых каналов и диффузия ионов натрия из межклеточной жидкости через мембрану, что приводит к ее деполяризации и возникновению ПД. В клетках рабочего миокарда ПД равен 80...90 мВ, при ПД Ю0...120мВ медленная диастолическая деполяризация в отличие от пейсмекеров отсутствует. Скорость нарастания деполяризации велика, восходящая часть ПД очень крутая, но реполяризация протекает замедленно, и мембрана остается деполяризованной в течение сотен миллисекунд (см. рис. 6.3, Б). Таким образом, длительность ПД в миокардиоцитах во много раз больше, чем в других мышечных волокнах. Благодаря этому все мышечные волокна предсердий или желудочков успевают сократиться до того, как какое-либо из этих волокон начнет расслабляться. Поэтому фаза реполяризации продолжается в течение всей систолы. Во время развития ПД возбудимость сердца, как и других возбудимых тканей, изменяется. Во время деполяризации возбудимость сердца резко снижается. Это — фаза абсолютной рефрактерности. Причиной ее является инактивация натриевых каналов, что прекращает поступление новых ионов натрия в мембрану. Если в скелетной мышце абсолютная рефрактерность очень кратковременная, измеряется десятыми долями миллисекунды и заканчивается в начале сокращения мышцы, то в сердце абсолютная невозбудимость продолжается весь период систолы. Практически это означает, что если во время систолы на сердце действует какой-либо раздражитель, даже сверхпороговый, то сердце на него не реагирует. Поэтому в отличие от скелетных мышц сердце не способно к тетаническим сокращениям и защищено от слишком быстрого повторного возбуждения и сокращения. Все сокращения сердечной мышцы одиночные. При очень большой частоте импульсов возбуждения сердце сокращается не на каждый ПД, а на только те из них, которые поступают по окончании абсолютной рефрактерности. Во время нисходящей фазы реполяризации, которая совпадает с началом расслабления сердечной мышцы, возбудимость сердца начинает восстанавливаться. Это — фаза относительной рефрактерности. Если в начале диастолы на сердце действует какой-либо дополнительный раздражитель, то сердце готово ответить на него новой волной возбуждения. Внеочередное возбуждение и сокращение сердца под действием раздражителя в период относительной рефрактерности называется экстрасистолой. Если очаг внеочередного возбуждения находится в синусном узле, то это приводит к преждевременному возникновению сер-
Рис. 6.4. Экстрасистола: J, 2, 3 — искусственное раздражение наносят во время сокращения желудочков, поэтому эффекта нет (абсолютная рефрактерная фаза); 4, 5, б—раздражение наносят во время расслабления мышцы и вызывают появление экстрасистол, амплитуда которых тем больше, чем позже в период расслабления нанесено раздражение. Это связано с изменением возбудимости мышцы, наступающим после возбуждения; прямые стрелки и пунктирные линии указывают момент появления импульсов в синусном узле, боковые — момент искусственного раздражения сердца дечного цикла, при этом последовательность сокращений предсердий и желудочков не изменяется. Если же возбуждение возникает в желудочках, то после внеочередного сокращения (экстрасистолы) появляется удлиненная пауза. Интервал между экстрасистолой и следующей (очередной) систолой желудочков называется компенсаторной паузой (рис. 6.4.). Компенсаторная пауза объясняется тем, что экстрасистола, как и всякое сокращение сердечной мышцы, сопровождается рефрактерной паузой. Очередной импульс, возникающий в синусном узле, приходит в желудочки во время абсолютной рефрактерное™ и не вызывает их сокращения. Новое сокращение наступит лишь в ответ на следующий импульс, когда возбудимость миокарда восстановится. После относительной рефрактерности в сердце наступает очень короткий период повышенной возбудимости — экзальтации, когда сердце готово ответить даже на подпороговое раздражение. Проводимость. Проводимость — свойство сердечной мышцы проводить возбуждение. Как уже сказано, импульс возбуждения (ПД), возникая в пейс-мекерах синусного узла, распространяется сначала на предсердия. В предсердиях, где очень небольшое количество проводящих атипичных мышечных волокон, возбуждение распространяется не только по ним, но и по рабочим кардиомиоцитам. Это объясняет небольшую скорость распространения возбуждения в предсердиях. Поскольку синусный узел расположен в правом предсердии, а скорость передачи ПД невелика, то возбуждение правого предсер- дия начинается немного раньше, чем левого. Сокращение же левого и правого предсердий происходит одновременно. После того как возбуждение охватит мышцы предсердий, они сокращаются, а возбуждение концентрируется и задерживается в атриовентрикулярном узле. Атриовентрикулярная задержка длится до окончания сокращения предсердий, и только после этого возбуждение переходит на пучок Гиса. Таким образом, биологическое значение атриовентрикулярной задержки заключается в обеспечении последовательности сокращений предсердий и желудочков. Одновременное их сокращение иногда бывает при очень серьезной патологии, когда возбуждение возникает не в синусном узле, а в атриовентрикулярном и распространяется в обе стороны от атриовен-трикулярного узла — и в предсердия, и в желудочки. В таком случае наступает резкое нарушение гемодинамики в сердце. Механизмы атриовентрикулярной задержки не выяснены. Возможно, влияет низкая амплитуда ПД в клетках-пейсмекерах данного узла, сильная натриевая инактивация, большое сопротивление межклеточных контактов. Далее возбуждение распространяется по пучку Гиса, ножкам пучка Гиса и волокнам Пуркинье. Волокна Пуркинье контактируют с сократительными волокнами миокарда, и возбуждение передается с проводящей системы на рабочие мышцы. Скорость распространения возбуждения в сердце следующая: от синусного узла до атриовентрикулярного узла — 0,5...0,8 м/с; в атриовентрикулярном узле — 0,02...0,05; по проводящей системе желудочков — до 4,0; в сократительной мышце желудочков — 0,4 м/с. Непосредственная связь проводящей системы сердца с рабочими кардиомиоцитами осуществляется с помощью многочисленных разветвлений волокон Пуркинье. Передача сигналов происходит электрическим путем с небольшой задержкой. Эта задержка возбуждения способствует суммированию импульсов, неодновременно поступающих по волокнам Пуркинье, и обеспечивает лучшую синхронизацию процесса возбуждения рабочего миокарда. В рабочем миокарде имеются контакты как между торцами, так и боковыми поверхностями волокон. Поэтому возбуждение от основных стволов проводящей системы (ножек пучка Гиса) практически одновременно распространяется на правый и левый желудочки, обеспечивая их одновременное сокращение. Направление возбуждения внутри желудочков различно у животных разного вида. Так, у собак возбуждение вначале возникает на расстоянии нескольких миллиметров от внутренней поверхности мышечной стенки, а затем переходит к эндокарду и эпикарду. У копытных (у коз) направление распространения возбуждения в толще мышечной стенки меняется много раз, и множество волокон в районах эндокарда, эпикарда и в глубине стенки активируется практически одновременно.
В межжелудочковой перегородке возбуждение начинается в Особенности распространения возбуждения в сердце имеют значение при анализе электрокардиограммы — записи биотоков сердца. Сократимость. Сокращение — специфический признак возбуждения сердечной мышцы. Как и в других мышцах, сокращение сердечных мышечных волокон начинается после распространения потенциала действия по поверхности клеточных мембран и является функцией миофибрилл. Сократительная система миофиб-рилл представлена четырьмя белками — актином, миозином, тро-понином и тропомиозином. Сокращение миофибрилл сердца в принципе не отличается от сокращений скелетных мышц согласно теории скольжения протофибрилл Хаксли. Суть теории Хаксли заключается в скольжении тонких актино-вых нитей в промежутки между толстыми миозиновыми нитями,; что приводит к укорочению саркомера. При расслаблении мышцы актиновые нити отодвигаются назад, занимая исходное положение. В механизме скольжения актиновых нитей имеет значение кальций, депонированный в саркоплазматическом ретикулуме. Последовательность электрических и механических процессов при сокращении сердечных мышечных волокон в настоящее время представляется следующим образом. Потенциал действия, возникший на поверхности мембраны мышечного волокна, по поперечным Т-трубочкам, которые являются впячиваниями наружной мембраны, достигает системы поперечных трубочек, соединенных с цистернами саркоплазматического ретикулума. Полости сарко-плазматического ретикулума не сообщаются ни с Т-трубочками, ни с интерстициальной жидкостью и заполнены раствором с высоким содержанием ионов кальция. Полости Т-трубочек имеют такой же состав, что и межклеточная жидкость. Во время возбуждения активируются натриевые каналы в мембранах Т-трубочек и в миоплазму входят ионы натрия и кальция из межклеточной жидкости. Большая часть входящего кальция не участвует в сокращении миофибрилл, а пополняет его запасы в саркоплазматическом ретикулуме. Под воздействием потенциала действия повышается проницаемость мембраны саркоплазматического ретикулума и ионы кальция вьщеляются из него в миоплазму. Ионы кальция связываются с тропонином, что вызывает конформационные изменения в его молекуле. Сдвиг тропонин-тропомиозинового стержня I обеспечивает взаимодействие нитей актина и миозина (напомним, Щ что в расслабленной мышце актиновые волокна прикрыты молеку- 1 лами тропонина и тропомиозина, образующими комплекс, препятствующий скольжению протофибрилл). После освобождения актиновых нитей от блокировки тропо-миозиновым комплексом миозиновые головки присоединяются к соответствующему центру актиновых нитей под углом 90°. Затем наступает спонтанный поворот головки на 45°, развивается напряжение и происходит продвижение актиновой нити на один шаг. Эти процессы осуществляются за счет энергии АТФ, причем распад АТФ катализируется актомиозиновым комплексом, обладающим АТФ-азной активностью. Когда возбуждение прекращается, содержание ионов кальция в миоплазме снижается вследствие работы кальциевого насоса и закачивания кальция в саркоплазматический ретикулум, причем на работу кальциевого насоса также затрачивается энергия АТФ. В результате снижения содержания кальция в миоплазме тропо-миозиновый комплекс защищает активные центры актомиозино-вых нитей. Нити миозина и актина восстанавливают исходное положение, и мышца расслабляется. Изложенная теория сокращения сердечной мышцы во многом объясняет экспериментальные и клинические наблюдения о влиянии кальция и магния — его антагониста на работу сердца. Известно, что при перфузии изолированного сердца раствором, не содержащим кальция, оно останавливается, а при добавлении кальция в перфузионный раствор сокращения восстанавливаются. Известно также, что сердечные глюкозиды (например, препараты наперстянки) увеличивают проницаемость мембран для кальция и тем самым восстанавливают транспорт кальция между саркоплазматическим ретикулумом, наружной мембраной и миоплазмой. Согласуется с теорией мышечного сокращения и благоприятное влияние на сердце макроэргических веществ, энергия которых используется не только для механического сокращения, но и для работы ионных насосов — кальциевого и калиево-натриевого. Сократительные свойства сердечной мышцы несколько отличаются от скелетных. Если скелетная мышца реагирует на раздражение в соответствии с его силой, то сердечная мышца подчиняется закону Боудича «все или ничего». Его суть заключается в том, что на подпороговые раздражения сердце не сокращается («ничего»), а на пороговое раздражение отвечает максимальным сокращением («все»), и увеличение силы раздражителя не приводит к увеличению силы сокращения. В скелетных мышцах закону «все или ничего» подчиняются отдельные мышечные волокна. Дело в том, что потенциал действия вызывает освобождение кальция из саркоплазматического ретикулума равномерно по всей длине волокна, поэтому оно сокращается полностью. Но в скелетной мышце имеются волокна с разной степенью возбудимости, поэтому при слабом раздражении сокращаются не все волокна и суммарное сокращение оказывается небольшим. В сердечной же мышце волокна рабочего, т. е. сократительного, миокарда соединены межклеточными контактами (выростами плазматических мембран), что способствует практически одновременному распространению потенциала действия по всей мышце, и она возбуждается и сокращается как единый орган, 1 являясь функциональным синцитием. Закон Боудича является скорее правилом с определенными ограничениями. При подпороговом раздражении сокращение, действительно, не возникает, но в это время начинается активация натриевых каналов и повышается возбудимость миокардиоцитов. Возникающие местные потенциалы могут суммироваться и вызвать распространяющийся потенциал действия. С другой стороны, сила сокращения сердца, как хорошо известно, непостоянна и может изменяться в различных условиях жизни. Другая характерная особенность сердечной мышцы заключается в том, что сила сокращения сердца зависит от степени растяжения мышечных волокон во время диастолы, когда полости запол
|
|||||||||||||||||
Последнее изменение этой страницы: 2016-12-16; просмотров: 370; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.175.48 (0.012 с.) |