Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теорема (об отрезках хорды).Содержание книги
Поиск на нашем сайте
Пусть точка расположена внутри круга радиуса на расстоянии от его центра, - произвольная хорда, проходящая через . Тогда произведение постоянно и . Иными словами, если через какую-то точку внутри круга провести две хорды, то произведение отрезков, на которые разделилась одна хорда, равно произведению отрезков для другой хорды. Теорема о сумме квадратов сторон и диагоналей параллелограмма. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон. Окружность называется описанной около многоугольника, если она проходит через все его вершины. При этом многоугольник называется вписанным в окружность. Свойство описанного четырехугольника: В описанном четырехугольнике суммы противоположных сторон равны (рисунок).
Следствие: В параллелограмм можно вписать окружность тогда и только тогда, когда этот параллелограмм – ромб. Свойство вписанного четырехугольника. Сумма противоположных углов вписанного четырехугольника равна 180°. Признак вписанного четырехугольника. Если сумма двух противоположных углов четырехугольника равна 180°, то около этого четырехугольника можно описать окружность (без доказательства). Замечание: Признак вписанного четырехугольника можно переформулировать следующим образом: если суммы противоположных углов четырехугольника равны, то около него можно описать окружность. Следствие: Около параллелограмма можно описать окружность тогда и только тогда, когда он является прямоугольником. Геометрическое место точек (сокращенно ГМТ), обладающих некоторым свойством,- это фигура, состоящая из всех точек, для которых выполнено это свойство. Решение задачи на поиск ГМТ должно содержать доказательство того, что а) точки, обладающие требуемым свойством, принадлежат фигуре F, являющейся ответом задачи; б) все точки фигуры F обладают требуемым свойством. Геометрические преобразования. Геометрическое преобразование плоскости – взаимно-однозначное отображение этой плоскости на себя. Наиболее важными геометрическими преобразованиями являются движения, т.е. преобразования, сохраняющие расстояние. Иначе говоря, если – движение плоскости, то для любых двух точек этой плоскости расстояние между точками и равно . Теорема Менелая. Если прямая пересекает стороны или продолжения сторон треугольника соответственно в точках , то имеет место равенство . Теорема Чевы. Пусть на сторонах треугольника или их продолжениях взяты соответственно точки . Прямые пересекаются в одной точке или параллельны тогда и только тогда, когда .
Парабола – эта линия, которая в некоторой прямоугольной декартовой системе координат координат имеет уравнение . Указанная система координат называется канонической, уравнение – каноническим уравнением параболы. Теорема. Парабола представляет собой множество точек, равноудаленных от данной прямой (директрисы параболы) и данной точки (фокуса параболы), не лежащей на директрисе. Эллипс – это линия, которая в некоторой прямоугольной декартовой системе координат координат имеет уравнение . Указанная система координат называется канонической, уравнение – каноническим уравнением эллипса. Гипербола – эта линия, которая в некоторой прямоугольной декартовой системе координат координат имеет уравнение . Указанная система координат называется канонической, уравнение – каноническим уравнением гиперболы.
|
|||||||
Последнее изменение этой страницы: 2016-12-15; просмотров: 741; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.104.118 (0.01 с.) |