Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теоретические методы, применяемые при изучении строения молекул и химической связи. Основные положения методов валентных связей.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Цель: изучить теоретические методы, применяемые при изучении строения молекул и химической связи. Основные положения методов валентных связей. План. 1. Образование химической связи. 2. Ковалентная связь. Метод ВС. 3. Донорно-акцепторный механизм, образование ковалентной связи. 4. Ионная связь. 5. Водородная связь.
1. Существует 2 способа образования ковалентной связи: а. Каждый атом для образования связи использует свой неспаренный электрон Cl· + Cl· = Cl: Cl – это обменный способ. в. Один атом для образования химической связи использует электронную пару, у другой вакантную орбиталь NH3+H+=NH4+ - это донорно-акцепторный способ (механизм) Расстояние между ядрами атомов называют длиной связи или межъядерным расстоянием. Чем размеры атомов больше, тем больше и межъядерное расстояние Энергия химической связи – это минимальная энергия необходимая для разрыва химической связи. Энергия химической связи возрастает с увеличением кратности химической связи. Кратность связи численно равна числу электронных пар участвующих в образовании химической связи. Энергия химической связи увеличивается с уменьшением межъядерного расстояния. Ионная связь образуется в результате контакта двух атомов металла и неметалла. Электрон от атома металла переходит на вакантные орбитали атома неметалла. Атом металла заряжается положительно, а атом неметалла – отрицательно. Противоположно заряженные ионы удерживаются силами электростатического взаимодействия. Химическая связь – это совокупность сил, действующих между атомами или группой атомов. Химическая связь осуществляется валентными электронами. По современным представлениям химическая связь имеет электронную природу, но осуществляется она по-разному. Поэтому различают три основных типа химической связи: ковалентную, ионную, металлическую. Между молекулами возникает водородная связь, и происходят вандерваальсовые взаимодействия. К основным характеристикам химической связи относятся: ● длина связи – это межъядерное расстояние между химически связанными атомами. Она зависит от природы взаимодействующих атомов и от кратности связи. С увеличением кратности длина связи уменьшается, а, следовательно, увеличивается ее прочность; ● кратность связи – определяется числом электронных пар, связывающих два атома. С увеличением кратности энергия связи возрастает; ● угол связи – угол между воображаемыми прямыми проходящими через ядра двух химически взаимосвязанных соседних атомов; ● энергия связи ЕСВ – это энергия, которая выделяется при образовании данной связи и затрачивается на ее разрыв, кДж/моль. Ковалентная связь Химическая связь, образованная путем обобществления пары электронов двумя атомами, называется ковалентной. Объяснение химической связи возникновением общих электронных пар между атомами легло в основу спиновой теории валентности, инструментом которой является метод валентных связей (МВС), открытый Льюисом в 1916 г. Для квантово-механического описания химической связи и строения молекул применяют ещё один метод – метод молекулярных орбиталей (ММО). ● Метод валентных связей Основные принципы образования химической связи по МВС: 1. Химическая связь образуется за счет валентных (неспаренных) электронов. 2. Электроны с антипараллельными спинами, принадлежащие двум различным атомам, становятся общими. 3. Химическая связь образуется только в том случае, если при сближении двух и более атомов полная энергия системы понижается. 4. Основные силы, действующие в молекуле, имеют электрическое, кулоновское происхождение. 5. Связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака. Существует два механизма образования ковалентной связи Обменный механизм. Связь образована путем обобществления валентных электронов двух нейтральных атомов. Каждый атом дает по одному неспаренному электрону в общую электронную пару: а б Рис. Обменный механизм образования ковалентной связи: а неполярной; б – полярной
Донорно-акцепторный механизм. Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь. Соединения, образованные по донорно-акцепторному механизму, относятся к комплексным соединениям Рис. 8. Донорно-акцепторный механизм образования ковалентной связи Ковалентная связь имеет определенные характеристики. Насыщаемость – свойство атомов образовывать строго определенное число ковалентных связей. Благодаря насыщаемости связей молекулы имеют определенный состав. Направленность – т. е. связь образуется в направлении максимального перекрытия электронных облаков. Относительно линии соединяющей центры атомов образующих связь различают: σ и π (рис. 9): σ -связь – образована перекрыванием АО по линии соединяющей центры взаимодействующих атомов; π -связь – это связь, возникающая в направлении оси перпендикулярной прямой, соединяющей ядра атома. Направленность связи обусловливает пространственную структуру молекул, т. е. их геометрическую форму. Полярность – если электронная плотность расположена симметрично между атомами, ковалентная связь называется неполярной, если электронная плотность смещена в сторону электроотрицательного атома, то ковалентная связь называется полярной. Полярность связи тем больше, чем больше разность электроотрицательностей атомов, молекула называется диполем. Диполь – это система, в которой имеется два электрических заряда, равных по величине, но противоположных по знаку, расположенных на некотором расстоянии друг от друга. Произведение длины диполя l, т. е. расстояния между полюсами в молекуле и величины заряда электрона ē называется дипольным моментом μ. Дипольный момент молекулы служит количественной мерой ее полярности. Дипольные моменты молекул измеряют в дебаях (D).
Чем больше длина диполя (дипольный момент), тем больше полярность молекулы (и др.). Дипольный момент направлен от положительного конца диполя к отрицательному. Поэтому дипольный момент многоатомной молекулы следует рассматривать как векторную сумму дипольных моментов связей: он зависит не только от полярности каждой связи, но и от взаимного расположения этих связей. Поляризуемость – способность молекулы становиться полярной. Данное явление происходит под действием внешнего электрического поля или под влиянием другой молекулы, являющейся партнером по реакции. Существует обратная зависимость между полярностью и поляризуемостью ковалентной связи: чем больше полярность связи, тем меньше остается возможности для их дальнейшего смещения под действием внешних сил. Ионная связь Ионная (электровалентная) связь – это сильнополярная ковалентная связь. В ее основе лежит электростатическое взаимодействие ионов. Согласно ей, атомы элементов с числом электронов в наружном слое меньше восьми присоединяют или теряют такое число электронов, которое делает наружный электронный слой таким, как у атома ближайшего инертного газа. Атом, потерявший электроны, превращается в положительно заряженный ион (катион). Атом, присоединивший электроны, становится отрицательно заряженным ионом (анион). Разноименно заряженные ионы притягиваются друг к другу. Возникновение ионной связи имеет место только в том случае, если элементы, атомы которых реагируют между собой, обладают резко отличными значениями энергии ионизации и сродства к электрону. Ионных соединений немного. Они обладают основными свойствами: в расплавленном состоянии обладают электропроводностью, в воде легко диссоциируют на ионы (растворяются), имеют высокую температуру плавления и кипения. Ионная связь характеризуется следующими показателями: Ненаправленность. Ионы – заряженные шары, их силовые поля равномерно распределяются во всех направлениях в пространстве, поэтому они притягивают противоположный по знаку ион в любом направлении. Ненасыщаемость. Взаимодействие двух ионов не может привести к полной взаимной компенсации их силового поля. Поэтому у них сохраняется способность притягивать ионы противоположного знака и по другим направлениям. Ионный кристалл () – гигантская молекула из ионов. Из отдельных молекул ионные соединения состоят только в парообразном состоянии. Водородная связь Водородная связь – одна из разновидностей взаимодействия между полярными молекулами, образуется между электроотрицательными атомами одной молекулы и атомами водорода другой, типа Н-Х (Х – это F, O, N, Cl, Br, I) за счет сил электростатического притяжения. Связь между водородом и одним из этих атомов характеризуется достаточной полярностью, поскольку связующее электронное облако смещено в сторону более электроотрицательного атома. Водород в данном случае расположен на положительном конце диполя. Два и более таких диполя взаимодействуют между собой так, что ядро атома водорода одной молекулы (положительный конец диполя) притягивается неподеленной электронной парой второй молекулы. Данная связь проявляется в газах, жидкостях и твердых телах. Она относительно прочна. Наличие водородной связи обусловливает повышение устойчивости молекул вещества, а также повышению их температуры кипения и плавления. Образование водородных связей играет важную роль как в химических, так и в биологических системах. Водородная связь бывает внутри- и межмолекулярной молекулы карбоновых кислот в неполярных растворителях димеризуются за счет двух межмолекулярных водородных связей. Существование веществ в различных агрегатных состояниях свидетельствует о том, что между частицами (атомы, ионы, молекулы) имеет место взаимодействие, обусловленное ван-дер-ваальсовыми силами притяжения. Наиболее важной и отличительной чертой этих сил является их универсальность, так как они действуют без исключения между всеми атомами и молекулами. Межмолекулярные силы (вандерваальсовые силы) – взаимодействие между молекулами, в результате которого вещество переходит в жидкое или твердое состояние. Межмолекулярные силы имеют электрическую природу. Они обусловлены полярностью и поляризуемостью молекул. Различают три типа межмолекулярного взаимодействия: дипольное, индукционное, дисперсионное. В молекулах, образованных более чем двумя атомами различных элементов, могут существовать разные типы связей.
Контрольные вопросы 1. Объяснить с позиций метода МО возможность существования молекулярного иона Не и невозможность существования молекулы Не2. 2. Какая из молекул — В2или С2 характеризуется более высокой энергией диссоциации на атомы? Сопоставить магнитные свойства этих молекул. 3. Чему равнаковалентность углерода в молекуле СО: а) двум; б) трем; в) четырем? 4. Может ли произойти реакция между HFи SiFа) может; б) не может? 5. Какими магнитными свойствами обладает молекула 02: а) диамагнитна; б) парамагнитна?, 6. Какова кратность связи в молекуле N0: а) два; б) два с половиной; в) три? 7. Какие из перечисленных частиц парамагнитны: a) N2; б) 02; в) N0; г) СО; д) CN? 8. Какие из перечисленных частиц не могут существовать в устойчивом состоянии с позиций теории МО: б) Н2; в) Н2; г) Не2; д) ННе?
Лекция № 5.
|
||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 553; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.152.102 (0.013 с.) |