Полярность и поляризуемость ковалентной связи и молекул 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Полярность и поляризуемость ковалентной связи и молекул



Диссоциация

 

По способности проводить электрический ток все вещества делятся на электролиты (проводящие электрический ток) и неэлектролиты (не проводящие электрический ток). Электролиты -вещества, обладающие ионной проводимостью; их называют проводниками второго рода – прохождение тока через них сопровождается переносом вещества. К электролитам относится большинство неорганических кислот, оснований и солей. В среде высокой диэлектрической проницаемости (спирты, вода и др.) они распадаются на ионы. Процесс распада молекул на ионы называется электролитической диссоциацией: NaCl Na+ + Cl-. Диссоциация электролитов на ионы сопровождается сольватацией, т.е. взаимодействием ионов с полярными молекулами растворителя. Если растворителем является вода, то термин «сольватация» заменяется термином «гидратация».

Количественной характеристикой процесса диссоциации является степень диссоциации ( a ), которая показывает отношение числа молекул, распавшихся на ионы (Nион), к общему числу растворенных молекул (Nобщ):

a= Nион / Nобщ. По степени диссоциации электролиты делятся:

1) на сильные, которые в 0,1 М растворе имеют a>30%; к ним относятся: почти все соли (кроме HgCl2, СdCl2, Fe(SCN)3, Pb(CH3COO)2 и некоторые другие); сильные минеральные кислоты (HNO3, HCl, H2SO4, HI, HBr, HСlO4); основания щелочных (LiOH, NaOH, KOH, RbOH, CsOH, FrOH) и щелочно-земельных металлов(Ca(OH)2, Sr(OH)2, Ba(OH)2);

2) средние (a = 3 - 30 % в 0,1 М растворах); к ним относятся, например, H3PO4, H2SO3, HF, Mg(OH)2;

3) слабые (a < 3 % в 0,1 М растворах); слабыми электролитами являются H2S, H2CO3, HNO2, HCN, H2SiO3, H3BO3, HClO и др., а также большинство оснований многовалентных металлов, NH4OH и вода.

Сильные электролиты практически нацело диссоциируют на ионы, и этот процесс можно изобразить следующим образом:

HCl H+ + Cl-; Na2SO4 2Na+ + SO42-

Для оценки состояния ионов в растворе пользуются активностью – условной (эффективной) концентрацией ионов, в соответствии с которой они действуют в химических процессах. Активность иона а (моль/л) связана с его молярной концентрацией в растворе (См) соотношением: а = f·См, где f - коэффициент активности иона (безразмерная величина).

Коэффициенты активности ионов зависят от состава и концентрации раствора, заряда и природы иона и других условий. Значения коэффициентов активности по рассчитанной ионной силе раствора можно определить с использованием соответствующих таблиц. Ионная сила раствора (Ι) равна полусумме произведений молярных концентрации (См) каждого иона на квадрат его заряда (Z):

Ι = 0,5 (C1Z12 + C2Z22 + … + CnZn2) = 0,5 Σ Ci Zi 2, (i = от 1 до n)

Слабые электролиты диссоциируют частично и обратимо. В их растворах преобладают не ионы, а молекулы. К равновесию, которое устанавливается в растворе слабого электролита между молекулами и ионами, можно применить законы химического равновесия и записать константу равновесия, которая называется константой диссоциацииД) и приводится в таблицах. Константа диссоциации характеризует силу электролита: чем больше величина КД., тем сильнее электролит, и наоборот.

HNO2 H+ + NO2 (уравнение электролитической диссоциации)

1, где [H+], [NO2-], [HNO2] – молярные равновесные концентрации соответствующих частиц в растворе, КД– константа диссоциации азотистой кислоты HNO2

Равновесия в слабых электролитах подчиняются закону разведения Оствальда. Если общая молярная концентрация слабого электролита, например, слабой кислоты HNO2 равна С (моль/л), тогда концентрация ионов H+ и NO2- будет определяться выражением [H+] = [NO2-] = С·a (моль/л), а концентрация недиссоциированного электролита [HNO2] = (С-С·a). Тогда

. При a << 1 получим КД = С.a2 и .

Степень диссоциации зависит от природы электролита, его концентрации, природы растворителя, присутствия в растворе одноименных ионов, температуры. Для одного и того же электролита при данной температуре степень диссоциации (a) увеличивается с разбавлением раствора; при больших разбавлениях электролит полностью диссоциирует (a®1). С увеличением температуры a также увеличивается.

Лекция 12. Диссоциация воды. Диссоциация кислот и оснований.

Водородный показатель

 

Вода в очень малой степени находится в диссоциированном состоянии (очень слабый электролит): H2O H+ + OH


К её диссоциации можно применить закон действующих масс:

При столь малой константе диссоциации (КД) концентрация воды остается практически неизменной и равной [H2O]=1000/18=55.6 моль/л. Произведение постоянных величин - также постоянная величина: Kд∙[H2O] = [H+]∙[OH].
Таким образом, произведение молярных концентраций ионов водорода [H+] и гидроксильных групп [OH] в любом водном растворе есть величина постоянная (при данной температуре) и называется ионным произведением воды (КВ). Диссоциация воды – процесс эндотермический, поэтому ионное произведение воды (КВ) зависит от температуры. С повышением температуры увеличиваются концентрации [H+] и [OH] ионов и величина ионного произведения: так, при 100оС: КВ = [H+][OH] = 59∙10-14, при 0оС: КВ = [H+][OH] = 0,139∙10-14.

В соответствии с теорией электролитической диссоциации ионы H+ являются носителями кислотных свойств, а ионы OH - носителями основных свойств. Поэтому раствор будет нейтральным, при условии: [H+] = [OH] =

10–7 моль/л; при [H+] > [OH] – кислым; при [H+] < [OH] – щелочным.

Концентрация катионов водорода [H+] обычно выражается очень малыми величинами. Для большего удобства принято пользоваться отрицательным значением десятичного логарифма молярной концентрации ионов [H+], который назван водородным показателем, и обозначается рН:

рН = –lg [H+], где [H+] - молярная концентрация ионов H+. Следовательно: [H+]= 10pH

Если реакция среды нейтральная, то [H+] = 10–7 [моль/л], и рН=7. Если реакция среды кислая, то [H+]>10–7 [моль/л], и рН<7. Если среда щелочная, то [H+]<10–7 [моль/л], и рН>7. По аналогии рН введен гидроксильный показатель (рОН):

рОН = –lg [ОH- ], где [ОH- ] - молярная концентрация ионов ОH-. А также показатель константы воды: рКВ = –lg КВ. Логарифмируя ионное произведение воды, получаем выражение: –lg [H+][OH] = –lg 10–14 и далее: pH + pOH = 14.

Кислота (определение по Аррениусу) – это химическое соединение, которое в водном растворе полностью или частично диссоциирует на положительные ионы водорода и отрицательные ионы кислотного остатка.

Полярность и поляризуемость ковалентной связи и молекул

 

Направленность ковалентной связи определяет геометрическую структуру (форму) молекулы. Атомные орбитали имеют разные формы и размеры, разную ориентированность в пространстве и перекрываются по определенным, предпочтительным направлениям, в которых достигается максимальная плотность перекрывания. Это приводит к образованию молекулы определенной геометрической формы (линейной, угловой, тетраэдрической и др.). Например, атом серы в сероводороде образует связи с атомами водорода за счет p-электронов, ориентированных вдоль осей координат под углом 90о. Это хорошо объясняет экспериментально наблюдаемый валентный угол ∟HSH между направлениями связей, равный 92о, и угловую геометрию молекулы H2S. Для объяснения валентных углов и геометрической структуры молекул при образовании химических связей электронами разных подуровней в теории ВС используются: 1) метод отталкивания валентных электронных пар (ОВЭП); 2) концепция гибридизации, предложенная Л. Полингом. Согласно этой концепции, при образовании связей орбитали разной симметрии смешиваются и переходят в гибридные атомные орбитали (АО) одинаковой формы, одинаковой усредненной энергии и симметрично расположенные вокруг центрального атома, что обеспечивает равноценность образуемых ими связей. Число гибридных орбиталей равно числу исходных. Относительное пространственное положение гибридных орбиталей в атоме определяется тем, что электроны с параллельными спинами стремятся находиться возможно дальше друг от друга (ОВЭП). Это уменьшает силы отталкивания и таким образом понижает энергию системы. Примеры некоторых видов гибридизации. sp-Гибридизация: в этом случае «перерождаются» одна s- и одна р-орбиталь, при этом возникают две гибридные sp-орбитали, располагающиеся на одной прямой; угол между их направлениями 1800 (BeCl2). sp2-Гибридизация: гибридизуются одна s- и две р-орбитали, угол 1200 (BCl3). При sp3-гибридизации валентный угол составляет 109028' (CH4).

Возможны также гибридные орбитали с участием d-атомных орбиталей (sp2d, sp3d, sp3d2). Геометрия молекул формируется типом гибридизации АО центрального атома. При образовании π -связи наблюдается максимальное перекрывание орбиталей по обе стороны от линии, соединяющей ядра связанных атомов, вращение вокруг π -связи невозможно. σ-Связь формирует геометрическую форму молекулы, а π -связь упрочняет и закрепляет ее.

Связь в двухатомных молекулах, образованная из одинаковых атомов (Н2) или атомов близких по электроотрицательности (ЭО), называется неполярной (гомеополярной). Связь, образованная различными атомами, отличающимися ЭО, называется полярной (гетерополярной). В таких молекулах электронная плотность перекрывающихся электронных облаков смещена к более ЭО атому. Полярность связи обуславливается различием ЭО и размеров атомов. Полярность связи обуславливает полярность молекулы, то есть несимметричное распределение электронной плотности, при котором «центры тяжести положительных и отрицательных зарядов» в молекуле не будут совпадать в одной точке. Между ними возникает какое-то расстояние – дипольное расстояние или длина диполя. Количественно полярность молекул оценивается величиной электрического дипольного момента. Электрическим дипольным моментом (μп) называется произведение абсолютного заряда электрона q на расстояние между зарядами (длина диполя l) и выражается в дебаях (1Д= 10-30 Кл·м): μп=q∙l. Электрический дипольный момент – величина векторная, то есть характеризуются направленностью (условно от положительного к отрицательному заряду). Электрический дипольный момент молекулы определяется как векторная сумма электрических дипольных моментов связей и, следовательно, зависит от полярности связей и геометрии молекулы. Неполярные молекулы - это молекулы с неполярными связями, а также молекулы, имеющие симметрично (линейная, плоско-треугольная, тетраэдрическая, октаэдрическая ориентация) расположенные вокруг центрального атома одинаковые полярные связи. Полярными являются молекулы, содержащие полярные связи и несимметричное геометрическое строение.

Поляризуемостью ковалентной связи и (или) молекулы называют ее способность под действием внешнего электрического поля становиться полярной или более полярной. Поляризуемость π -связи выше, чем поляризуемость σ-связи. Поляризуемость молекулы возрастает с увеличением ее объема и числа π -связей. Постоянный момент диполя полярной связи (молекулы) μn в электрическом поле становится больше на величину μi, равную временному наведенному или индуцированному диполю μ=(μni). Роль внешнего электрического поля могут играть заряженные частицы, входящие в состав самого соединения (ионы или атомы с большим эффективным зарядом). Поляризующее действие иона приводит к деформации электронной оболочки соседней частицы, которая тем больше, чем больше их поляризуемость.

Лекция 5. Межмолекулярные взаимодействия. Водородная связь

 

Электрически нейтральные атомы и молекулы, валентно насыщенные в общем понимании, способны к дополнительному взаимодействию друг с другом. При сближении молекул появляется притяжение, что обуславливает возникновение конденсированного состояния вещества. К основным видам взаимодействия молекул следует прежде всего отнести вандерваальсовы силы, водородные связи и донорно-акцепторные взаимодействия.

Очень слабые силы притяжения между нейтральными атомами или молекулами, проявляющиеся на расстояниях, превосходящих размеры частиц, называют межмолекулярным притяжением или силами Ван-дер-Ваальса. Они действуют в веществах, находящихся в газообразном и жидком состояниях, между молекулами в молекулярных кристаллах. Они играют важную роль в процессах адсорбции, катализа, а также в процессах растворения и сольватации. Ван-дер-Ваальсово притяжение имеет электрическую природу и рассматривается как результат действия трех эффектов – ориентационного, индукционного, дисперсионного: Е = Еор. + Еинд. + Едисп .

Энергия всех трех слагаемых связана с дипольным взаимодействием различного происхождения.

Ориентационное взаимодействие (диполь-дипольное взаимодействие) возникает только в полярных веществах, молекулы которых представляют собой диполи. При сближении полярные молекулы ориентируются противоположно заряженными сторонами диполей.

Индукционное взаимодействие связано с процессами поляризации неполярных молекул диполями окружающей среды. Образуется наведенный или индуцированный диполь. Подобное взаимодействие может наблюдаться и для полярных частиц.

Дисперсионное взаимодействие возникает при взаимодействии любых атомов и молекул независимо от их строения и полярности. Силы дисперсионного взаимодействия универсальны. Основа такого взаимодействия - в представлении о синхронизации движения мгновенных диполей взаимодействующих частиц. Длина вандерваальсовой связи больше, а прочность меньше, чем те же параметры для ковалентной связи. Специфичность сил Ван-дер-Ваальса – быстрое ослабление их с расстоянием, так как все составляющие эффекты обратно пропорциональны расстоянию между молекулами в шестой степени.

Поскольку Ван-дер-Ваальсовы взаимодействия имеют электростатическую природу, они ненасыщаемы и ненаправлены.

Водородная связь носит промежуточный характер между ковалентным и межмолекулярным взаимодействием. Она осуществляется между положительно поляризованным атомом водорода, химически связанным в одной молекуле, и отрицательно поляризованным атомом фтора или кислорода или азота (реже хлора, серы), принадлежащим другой молекуле (межмолекулярная водородная связь) или другой функциональной группе этой же молекулы (внутримолекулярная водородная связь). Единого мнения на механизм образования водородной связи пока не существует.

Водородная связь носит в некоторой степени характер донорно-акцепторной связи и характеризуется насыщаемостью и направленностью. Энергия водородной связи лежит в пределах между 8-40 кДж. Различают сильные и слабые водородные связи. Слабые водородные связи имеют энергию образования менее 15 кДж/моль. Энергия образования сильных водородных связей 15–40 кДж/моль. К ним относят связи О-Н…..О в воде, спиртах, карбоновых кислотах; связи N-H…N, N-H…O и O-H…N в молекулах амидов, белков и другие.

Водородная связь оказывает существенное влияние на структуру вещества и на его физические и химические свойства. Многие физические свойства веществ с водородной связью выпадают из общего ряда закономерностей в ряду аналогов. Например, элементы вторичной структуры (α-спирали, β-складки) в молекулах белков стабилизированы водородными связями. Водородные связи во многом обусловливают физические свойства воды и многих органических жидкостей (спирты, карбоновые кислоты, амиды карбоновых кислот, сложные эфиры). Аномально высокая электропроводность и теплоёмкость воды, а также теплопроводность многоатомных спиртов обеспечивается многочисленными водородными связями. Одна молекула воды может образовать до четырёх классических водородных связей с соседними молекулами. Водородные связи повышают температуру кипения, вязкость и поверхностное натяжение жидкостей. Помимо повышенной температуры кипения водородные связи проявляются также при формировании кристаллической структуры вещества, повышая его температуру плавления. В кристаллической структуре льда Н-связи образуют объемную сетку, при этом молекулы воды располагаются таким образом, чтобы атомы водорода одной молекулы были направлены к атомам кислорода соседних молекул.

 

Лекция 6. Химическая термодинамика

В термодинамике весь объективный мир делится на систему и окружающую среду. Система – это некоторая часть материального мира, ограниченная реальной или воображаемой поверхностью. Система, у которой отсутствует обмен веществом с окружающей средой, называется закрытой, а если отсутствует также и обмен энергией – изолированной системой.

Совокупность всех свойств системы есть её состояние. Те свойства, которые задаются, называются параметрами состояния, а вычисляемые – функциями состояния. Внутренняя энергия U (кДж), энтальпия Н (кДж), энтропия S (Дж/К), энергия Гиббса G (кДж) обычно выступают в качестве функции состояния и рассчитываются на один моль вещества, кДж/моль.

Химические процессы - это превращение одних веществ в другие. На разрыв связей в молекулах исходных веществ энергия затрачивается, а при образовании связей в молекулах продуктов реакции энергия выделяется. Если общее количество затраченной энергии больше выделенной, то процесс идет с поглощением энергии и является эндотермическим (ΔН>0). Если же количество выделенной энергии больше затраченной, то процесс осуществляется с выделением энергии и является экзотермическим ( ΔН<0).

Уравнения химических реакций, в которых указываются агрегатные состояния веществ, количества и тепловые эффекты, называются термохимическими. Для возможности сопоставления энергетических эффектов различных процессов их принято измерять в стандартных условиях: химически чистые вещества, при температуре 25°С (298 К) и давлении в 1 атм.

Тепловой эффект химической реакции при постоянном объёме (Qv) равен изменению внутренней энергии: Qv= - ΔU. Тепловой эффект реакции при постоянном давлении (QР) равен изменению энтальпии: QР= - ΔН. Энтальпию Н можно рассматривать как энергию расширенной системы: Н = U + РV.

Тепловой эффект реакции образования одного моля сложного вещества из простых веществ в модификациях устойчивых в стандартных условиях, называется стандартной теплотой образования (стандартной энтальпией образования) данного вещества: ∆Hºобр (кДж/моль). Теплота образования устойчивых модификаций простых веществ в стандартном состоянии принимается равной нулю. Важнейшим свойством любой функции состояния является независимость ее изменения от способа, или пути, изменения состояния системы. Данное заключение отражено в законе Гесса: тепловой эффект химических реакций, протекающих при постоянном давлении или объеме, не зависит от пути протекания реакции и определяется состоянием исходных веществ и продуктов реакции. Из закона Гесса вытекают 5 следствий. Тепловой эффект химической реакции при стандартных условиях, как одно из следствий, равен разности сумм стандартных энтальпий образования продуктов реакции и стандартных энтальпий образования исходных веществ, с учётом числа молей соответствующих веществ:

∆Hº = Σnпрод ∆Hºобр.(прод.) – Σnисх.∆Hºобр.(исх.),

где nпрод - количество вещества (моль) продукта реакции, nисх - количество вещества (моль) исходных реагентов, ∆Hºобр.(прод.) и .∆Hºобр.(исх.)– энтальпии образования продуктов и исходных реагентов [кДж/моль] соответственно.

В химических процессах одновременно действуют две силы: стремление частиц объединиться за счёт прочных связей, что уменьшает энтальпию системы ΔН<0, и стремление частиц разъединиться, что увеличивает энтропию Δ S >0. Энтропия S [Дж/(моль К)] является мерой свободы или мерой беспорядка. Две эти силы всегда направлены навстречу друг другу. При их равенстве система находится в равновесии. Результат действия энтальпийного (ΔН) и энтропийного (TΔS) факторов отражает термодинамический потенциал. В условиях постоянных температуры и давления этот потенциал называется энергией Гиббса Gили изобарно–изотермическим потенциалом:

ΔG = ΔН – TΔS. Изменение энергии Гиббса (ΔG) является мерой самопроизвольного протекания химической реакции: реакция может протекать самопроизвольно в сторону уменьшения энергии Гиббса (ΔG=G2–G1<0) Как и в случае ΔН и ΔS, изменение энергии Гиббса (ΔG) в результате химической реакции не зависит от пути процесса. Стандартное изменение энергии Гиббса (ΔGо) в ходе реакции равно

∆Gº = Σnпрод ∆Gºобр.(прод.) – Σnисх ∆Gºобр.(исх.),

где ∆Gºобр.(прод.) и ∆Gºобр.(исх.) – стандартные энергии Гиббса образования продуктов и исходных реагентов [кДж/моль] соответственно.

Лекция 7. Химическая кинетика

 

Химическая кинетика – учение о скорости и механизме химических реакций. При рассмотрении вопроса о скорости реакций необходимо различать реакции, протекающие в гомогенной системе, и реакции, протекающие в гетерогенной системе. Гомогенная система состоит из одной фазы, а гетерогенная из нескольких фаз. Фазой называется часть системы, отделённая от других частей поверхностью раздела, при переходе через которую свойства изменяются скачком. В гомогенной системе реакция протекает по всему объёму, в гетерогенной системе – на границе раздела фаз. Скоростью гомогенной реакции называется количество вещества, вступающего в реакцию или образующегося в результате реакции, за единицу времени в единице объёма системы. То есть скорость гомогенной реакциигомоген) определяется как изменение концентрации (ΔС) реагирующих веществ за единицу времени (Δτ). Средняя скорость реакции – величина положительная:

υгомоген = ± Δn/(Δτ·V) = ± ΔC/Δτ, [моль/(л·с)], где Δn – количество вещества, моль; Δτ - время реакции, с; V - объем реакционной смеси, л; ΔC - изменение молярной концентрации, [моль/л].

Скоростью гетерогенной реакции (υгетерог) называется количество вещества, вступившего в реакцию или образующегося при реакции за единицу времени на единице площади поверхности раздела фаз:

υгетерог = ±Δn/(Δτ·S), [моль/(с·м2)], где S - площадь поверхности раздела фаз, м2.

К важнейшим факторам, влияющим на скорость реакции, относятся следующие: природа реагирующих веществ, их концентрации, температура, природа растворителя, присутствие в системе катализаторов или ингибиторов. Скорость химической реакции пропорциональна числу соударений, которое тем больше, чем выше концентрация исходных веществ. Влияние концентрации реагирующих веществ на скорость реакциивыражается законом действия масс: при постоянной температуре скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, в степенях, численно равных коэффициентам в уравнении реакции. Таким образом, выражение для скорости реакции в соответствии с законом действия масс для процесса: Н2 + С12 = 2НС1 будет иметь вид: υ = k[H2]·[Cl2], где [H2] и [Cl2] - молярные концентрации H2 и Cl2 [моль/л] соответственно. Если реагенты газообразны, то вместо молярных концентраций в расчетах могут быть использованы величины парциальных давлений (Р(H2) ·и Р(Cl2)) исходных газов: υ = k1Р(H2)·Р(Cl2), где k и k1-коэффициенты пропорциональности или константы скорости химической реакции. Физический смысл этой величины раскрывается при равенстве концентраций исходных веществ 1 [моль/л], тогда υ = k, то есть k – удельная скорость. Поэтому чаще скорость реакции оценивается по величине k. Для гетерогенной реакции в выражение закона действия масс входят величины концентраций только газообразных или растворённых веществ. Например, для реакции: 2С(тв.) + О2 = 2СО, υ = k·[O2], где ·[O2] - молярная концентрация [моль/л].

Зависимость скорости химической реакции от температуры выражается правилом Вант-Гоффа: при повышении температуры на 10°С скорость большинства химических реакций увеличивается в 2-4 раза:

, где υ2 и υ1 – скорости реакции при температурах T2 и T1 соответственно; γ – температурный коэффициент скорости реакции (для большинства реакций он равен от 2 до 4). Более точно зависимость константы скорости от температуры описывается уравнением Аррениуса: k = A·exp-Eа/RT, где k – константа скорости реакции, А – предэкспоненциальная постоянная, Ea – энергия активации для данного процесса, R - универсальная газовая постоянная, T - температура, K.

Всякая химическая реакция протекает через образование некоторого активного комплекса, который затем распадается на продукты реакции. В неустойчивом промежуточном – переходном или активном комплексе - старые связи еще не полностью разорвались, а новые еще не вполне образовались, ему соответствует такое состояние системы, при котором энергия максимальна. Для перехода системы в активный комплекс нужна энергия, равная энергии активации. Энергия активации – избыточная энергия, которой должны обладать молекулы, для того чтобы их столкновение могло привести к образованию нового вещества; это своеобразный энергетический барьер, который отделяет исходные вещества от продуктов реакции. Катализатор – вещество, которое увеличивает скорость реакции, но при этом не расходуется в результате протекания процесса. В большинстве случаев действие катализатора объясняется тем, что он снижает энергию активации реакции. Ингибитор – замедляет реакцию, в его присутствии энергия активации увеличивается. Реакции, протекающие под действием катализаторов, называются каталитическими. Различают гомогенный и гетерогенный катализ. В случае гомогенного катализа катализатор и реагирующие вещества образуют одну фазу (газ или раствор). В случае гетерогенного катализа катализатор находится в системе в виде самостоятельной отдельной фазы.

Лекция 8. Химическое равновесие

 

 

Необратимыми химическими реакциями называют реакции, протекающие только в одном направлении до полного превращения исходных веществ. Обратимыми называют такие реакции, которые одновременно протекают в двух противоположных направлениях - прямом и обратном. Обратимые процессы не доходят до конца, а приводят к химическому равновесию, при котором концентрации всех реагирующих веществ не изменяются во времени. Для обратимых реакций наступает состояние химического равновесия, если изменение свободной энергии Гиббса равно нулю: ΔG = 0. Химическое равновесие является динамическим. В состоянии химического равновесия скорость прямой реакции равна скорости обратной реакции. Обратимость реакции отмечается знаком «обратимость» (), например: 3Н2 + N2 2NН3. Количественной характеристикой химического равновесия является константа химического равновесия ( Кр ). Константа равновесия - характерная величина для каждой обратимой химической реакции. Д ля гомогенной реакции в общем виде: a A + b B c C + d D

в состоянии равновесия скорости прямой (υ1) и обратной (υ2) реакций равны:

υ1 = υ2; υ1 = k1 [A]a∙[B]b; υ2 = k2 [C]c∙[D]d.

Тогда константа химического равновесия имеет вид:

Кр = k1/k2 = ([C]c∙[D]d)/([A]a∙[B]b), где [A], [B], [C],∙[D] – равновесные молярные концентрации веществ A, B, C и∙D, [моль/л] соответственно.

В выражение для константы равновесия входят равновесные молярные концентрации. Константа равновесия – отношение констант прямой (k1) и обратной (k2) реакций: k1/k2= Кр. Она зависит от температуры и природы реагирующих веществ, но не зависит от концентраций.

Равновесие в гетерогенных системах. Так как концентрации твердых фаз не входят в уравнение скорости реакции, то они не будут входить в уравнение константы равновесия гетерогенных обратимых систем. Например, для реакции: СаСО3(тв) СаО(тв) +СО2(г) константа химического равновесия рассчитывается по формуле Кр = [СО2].

Процесс изменения равновесных концентраций, вызванный нарушением равновесия, называется смещением или сдвигом равновесия. Воздействием различных внешних факторов можно добиться смещения равновесия в нужном направлении. Равновесие смещается в соответствии с принципом Ле-Шателье: если на систему, находящуюся в равновесии, оказать какое-либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, что оказанное воздействие уменьшится.

1. При увеличении концентрации какого-либо из веществ, участвующих в реакции, равновесие смещается в сторону расхода этого вещества; при уменьшении концентрации какого-либо из веществ равновесие смещается в сторону образования этого вещества. Рассмотрим реакцию 2СО + О2 2СО2. Введем в систему дополнительно некоторое количество угарного газа СО. Согласно закону действия масс: υ1 = k1[СО]2∙[О2], увеличение концентрации СО повлечет за собой увеличение скорости прямой реакции, тогда как скорость обратной реакции не изменится. В прямом направлении реакция теперь будет протекать быстрее, чем в обратном. В результате этого концентрации СО и О2 будут уменьшаться.

2. При увеличении давления путем сжатия системы, равновесие сдвигается в сторону уменьшения числа молекул газов, т.е. в сторону понижения давления; при уменьшении давления равновесие сдвигается в сторону возрастания числа молекул газов, т.е. в сторону увеличения давления. Рассмотрим влияние давления на реакцию N2O4(г) 2NO2(г).

В состоянии равновесия концентрации газов имеют равновесные значения [NO2] и [N2O4], а скорости прямой (υ1) и обратной (υ2) реакций определялись уравнениями: υ1 = k1·[N2O4] и υ2 = k2·[NO2]2. Не изменяя температуры, уменьшим в 2 раза объем системы. В первый момент парциальные давления и концентрации всех газов возрастут вдвое, но при этом изменится соотношение между скоростями прямой и обратной реакций:

υ1' = k1·2[N2O4] = 2υ1 и υ2' = k2·(2[NO2])2 = 4υ2. Таким образом, в результате увеличения давления скорость прямой реакции возросла только в 2 раза, а обратной - в 4 раза. Равновесие в системе нарушается, и обратная реакция будет преобладать над прямой – равновесие сместится влево, в сторону образования дополнительных количеств исходных реагентов.

3. Нарушение равновесия вследствие изменения температуры определяется знаком теплового эффекта реакции: при повышении температуры равновесие смещается в направлении эндотермической (ΔH>0), а при понижении – в направлении экзотермической реакции (ΔH<0).

Колебательные реакции периодические процессы, характеризующиеся колебаниями концентраций некоторых промежуточных соединений и, соответственно, скоростей превращения. Наблюдаются такие процессы в газовой и жидкой фазах и, особенно часто, на границе раздела этих фаз с твердой фазой.

Лекция 9. Растворы. Способы выражения концентрации растворов. Свойства растворов

 

Раствор - это твердая, жидкая или газообразная гомогенная система, состоящая из двух или более компонентов (составных частей), относительные количества которых могут изменяться в широких пределах. Всякий раствор состоит из растворенных веществ и растворителя, т. е. среды, в которой эти вещества равномерно распределены в виде молекул или ионов.

Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно растворить дополнительное количество данного вещества, ненасыщенным.

Концентрацию растворов можно выражать следующими способами:

1. Процентная концентрация по массе (ω, %) - число единиц массы (например, число граммов) растворенного вещества (mр.в.), содержащихся в 100 единицах массы (например, в 100 граммах) раствора (mр-ра):

ω= (mр.в.·100%)/mр-ра. Например, 15% раствор хлорида натрия – это такой раствор, в 100 г которого содержится 15 г NaCl и 85 г воды.

2. Молярностьм) - числомоль (n) растворенного вещества, содержащихся в 1 л раствора: См = n/V. Так, 2МH2SO4 обозначает раствор серной кислоты, в каждом литре которого содержится два моля H2SO4, 196 г.

3. Молярная концентрация эквивалента (нормальность)Н): - число моль эквивалентов (nэкв) растворенного вещества, содержащихся в одном литре раствора: Так, 2н. H2SO4 означает раствор серной кислоты, в каждом литре которого содержится два эквивалента, т. е. 98 г H2SO4.

4. Моляльностьm) - число молей растворенного вещества, приходящихся на 1000 г растворителя. Так, 2m H2SO4 оз



Поделиться:


Последнее изменение этой страницы: 2016-12-10; просмотров: 722; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.16.254 (0.063 с.)