Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Квантово-механическая модель атома. Квантовые числа, их физический смысл.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Цель: изучить квантово-механическую модель атома, квантовые числа и их физический смысл. План 1. Квантово-механическая модель атома. 2. Квантовые числа, их физический смысл. 3. Принцип Паули, правило Гунда.
1. В 1924 г. французский физик Луи де Бройль высказал идею о том, что материя обладает как волновыми, так и корпускулярными свойствами. Согласно уравнению де Бройля (одному из основных уравнений квантовой механики),
т. е. частице с массой m, движущейся со скоростью v соответствует волна длиной λ; h — постоянная Планка. Длину волны такой частицы называют длиной волны де Бройля. Для любой частицы с массой т и известной скоростью v длину волны де Бройля можно рассчитать. Идея де Бройля была экспериментально подтверждена в 1927 г., когда были обнаружены у электронов как волновые, так и корпускулярные свойства. В 1927 г. немецким ученым В. Гейзенбергом был предложен принцип неопределенности, согласно которому для микрочастиц невозможно одновременно точно определить и координату частицы X, и составляющую рх импульса вдоль оси х. Математически принцип неопределенности записывают следующими уравнениями: ΔxΔpx ≥ h; ΔxΔpy ≥ h; ΔxΔpz ≥ h. Отсюда следует, что при точном определении координаты х микрочастицы исчезает информация о ее импульсе Δpx, так как при х=0 величина Δpx→∞. Если удастся снизить погрешность Δp,то будет велика погрешность Δх. Источник этих погрешностей заключен не в приборах, а в самой природе вещей. Поскольку постоянная Планка очень мала, то ограничения, накладываемые принципом неопределенности, существенны только в масштабах атомных размеров. Согласно принципу неопределенности, невозможно утверждать, что электрон, имеющий определенную скорость, находится в данной точке пространства, здесь можно использовать лишь вероятностное описание. Для описания свойств электрона используют волновую функцию, которую обозначают буквой Ψ (пси). Квадрат ее модуля |Ψ|2, вычисленный для определенного момента времени и определенной точки пространства, пропорционален вероятности обнаружить частицу в этой точке в указанное время. Величину |Ψ|2 называют плотностью вероятности. Наглядное представление о распределении электронной плотности атома дает функция радиального распределения. Такая функция служит мерой вероятности нахождения электрона в сферическом слое между расстояниями r и (r+dr) от ядра. Объем, лежащий между двумя сферами, имеющими радиусы r и (r+dr), равен 4Πr2dr, а вероятность нахождения электрона в этом элементарном объеме может быть представлена графически в виде зависимостей функции радиального распределения. На рис. 1 представлена функция вероятности для основного энергетического состояния электрона в атоме водорода. Плотность вероятности |Ψ|2 достигает максимального значения на некотором конечном расстоянии от ядра. При этом наиболее вероятное значение r для электрона атома водорода равно радиусу орбиты a0 соответствующей основному состоянию электрона в модели Бора. Различная плотность вероятности дает представление об электроне, как бы размазанном вокруг ядра в виде так называемого электронного облака (рис. 2).
Рис. 1. Радиальное распределение вероятности пребывания электрона для основного энергетического состояния атома водорода
Рис. 2. Электронное s-облако (l - 0)
Чем больше величина |Ψ|2, тем больше вероятность нахождения электрона в данной области атомного пространства. В квантовой механике вместо термина «орбита» используют термин «орбиталь», которым называют волновую функцию электрона. Соответственно орбиталь характеризует и энергию и форму пространственного распределения электронного облака. Расчеты в квантовой механике проводят с помощью предложенного в 1926 г. австрийским ученым Э. Шредингером уравнения, которое является математическим описанием электронного строения атома в трехмерном-пространстве. В простейшем случае уравнение Шредингера может быть записано в виде где h — постоянная Планка; m — масса частицы; U — потенциальная энергия; Е — полная энергия; х, у, z — координаты; Ψ — волновая функция. Решая уравнение Шредингера, находят волновую функцию Ψ=f(x, y, z). Решение уравнения Шредингера возможно лишь при определенных значениях полной энергии Е. Определив вероятностную функцию можно оценить величину |Ψ|2dV — вероятность нахождения электрона в объеме пространства dV, окружающего атомное ядро. Решение уравнения Шредингера представляет сложную математическую задачу. 2. Состояние электрона в атоме описывают с помощью 4 чисел, которые называют квантовыми:
Главное квантовое число n Описывает: 1. среднее расстояние от орбитали до ядра; 2. энергетическое состояние электрона в атоме. Чем больше значение n, тем выше энергия электрона и больше размер электронного облака. Если в атоме несколько электронов с одинаковым n, то они образуют электронные облака одинакового размера - электронные оболочки. Орбитальное квантовое число l (азимутальное) Описывает форму орбитали, которая зависит от n.
Орбитали, имеющие одинаковое n, но разные l называют энергетическими подуровнями и обозначают буквами латинского алфавита:
Магнитное квантовое число m Описывает ориентацию орбиталей в пространстве. Спиновое квантовое число ms Описывает направление вращения электрона в магнитном поле - по часовой стрелке или против. На каждой орбитали может находиться только два электрона: один со спином +½ другой -½.
Что же касается электронов "внутри орбиталей", то их энергии одинаковы (так у всех десяти электронов 3d-орбитали энергии одинаковы).
Контрольные вопросы 1. Какой подуровень заполняется в атоме электронами после заполнения подуровня 4р? 2. Составить электронную формулу атома Кремния и графическую схему заполнения электронами валентных орбиталей этого атома в нормальном и р возбужденном состояниях. 3. На каком основании хлор и марганец помещают в одной группе периодической системы элементов? Почему их помещают в разных подгруппах? 4. Сколько значений магнитного квантового числа возможно для электронов энергетического подуровня, орбитальное квантовое число которого Z=2? Z = 3?, 5. Какое, максимальное число электронов может: додержать атом в электронном слое с главным квантовым числом n=4? 6. Определить по правилу Клечковского последовательность заполнение электронных орбиталей, характеризующихся суммой п + 1: а) 5; б) 6; в) 7. 7. Указать порядковый номер элемента, у которого: а) заканчивается заполнение электронами орбиталей 4 d б) начинается заполнение подуровня 4р. 8. Какой подуровень заполняется в атомах после подуровня 5s? 9. У какого элемента начинает заполняться подуровень 4 d? У какого элемента завершается заполнение этого подуровня? 10. Какой подуровень заполняется в атомах после заполнения подуровня 5р? После заполнения подуровня 5d? 11. Записать электронные формулы атомов элементов с зарядом ядра-: а) 8; б) 13; в) 18; г) 23; д) 53; е) 63; ж) 83. Составить графические схемы заполнения электронами валентных орбиталейэтих атомов.
Лекция № 3 Периодический закон и периодическая система Д.И. Менделеева. Цель: изучить периодический закон и познакомиться с периодической системой Д.И. Менделеева. План. 1. Работы предшественников Д.Менделеева. 2. Периодическая система Д.И. Менделеева. 3. Периодичность изменения свойств атомов химических элементов.
1. По мере накопления сведений о свойствах химических элементов возникла настоятельная необходимость и классификации. Ко времени открытия Д.И. Менделеевым Периодического закона было известно уже более 60 элементов. Работы предшественников Д.Менделеева. Многие химики пытались разработать систематику элементов. Классификация Берцелиуса. Выдающийся шведский химик И. Я. Берцелиус разделил все элементы на металлы и неметаллы на основе различий в свойствах образованных ими простых веществ и соединений. Он определил, что металлам соответствуют основные оксиды и основания, а неметаллам - кислотные оксиды и кислоты. Но групп было всего две, они были велики и включали значительно отличающиеся друг от друга элементы. Наличие амфотерных оксидов и гидроксидов у некоторых металлов вносило путаницу. Триады Деберейнера (1816 г.) Немецкий химик И. В. Деберейнер разделил элементы по три на основе сходства в свойствах образуемых им веществ и так, чтобы величина, которую мы сейчас понимаем как относительную атомную массу (Аг) среднего элемента, была равна среднему арифметическому двух крайних. Пример триады: Li, Nа, К. Аг(Nа) = (7 + 39): 2 = 23 Примерами других триад могут служить: S, Sе, Те; С1, Вг, I Работа И. Деберейнера послужила подтверждением мысли о наличии определенной связи между атомными массами и свойствами элементов. Но ему удалось составить лишь четыре триады, классифицировать все известные в то время элементы он не сумел. Спираль Шанкуртуа (1862 г.). Профессор Парижской высшей школы А. Бегье де Шанкуртуа предложил располагать элементы по спирали или образующей цилиндра в порядке возрастания их атомных масс и указал, что в этом случае можно заметить сходство свойств образуемых элементами веществ, если они попадают на одну и ту же вертикальную линию цилиндра, располагаясь один под другим, например: Так впервые родилась мысль о периодичности свойств элементов, но на нее не обратили внимания, и вскоре она оказалась забытой. Октавы Нъюлендса (1865 г.). Американский химик Д. А. Р. Ньюлендс пытался расположить известные ему элементы в порядке возрастания их атомных масс и обнаружил поразительное сходство между каждым восьмым по счету элементом, начиная с любого, подобно строению музыкальной октавы, состоящей из восьми звуков. Он назвал свое открытие законом октав: H LiBe B C N O F NaMgAlSi P S Cl KK CaCrTiMnFeCoCuZn V InAsSe Однако ему не удалось удовлетворительно объяснить найденную закономерность, более того, в его таблице не нашлось места не открытым еще элементам, а в некоторые вертикальные столбцы попали элементы, резко отличающиеся по своим свойствам. Таблица Мейера (1864 г.). Немецкий исследователь Л. Мейер расположил химические элементы также в порядке увеличения их атомных масс: - - -- LiBe C N O F NaMgSi P S Cl K Ca - AsSeBrRbSrSnSbTe I Cs - PbBi - -- Ba. Но в эту таблицу Мейер поместил всего 27 элементов, то есть меньше половины известных в то время. Расположение остальных элементов: В, А1, Си, Аg и др. - оставалось неясным, а структура таблицы была неопределенной. До Д. И. Менделеева было предпринято около 50 попыток классифицировать химические элементы. Большинство ученых пытались выявить связь между химическими свойствами элементов и их соединений и атомной массой. Открытие Периодического закона и построение Периодической системы химических элементов - заслуга великого русского ученого Д. И. Менделеева. Первый вариант Периодической таблицы элементов был опубликован Д. И. Менделеевым в 1869 году - задолго до того, как было изучено строение атома. В это время Менделеев преподавал химию в Петербургском университете. Готовясь к лекциям, собирая материал для своего учебника "Основы химии", Д. И. Менделеев раздумывал над тем, как систематизировать материал таким образом, чтобы сведения о химических свойствах элементов не выглядели набором разрозненных фактов. Ориентиром в этой работе Д. И. Менделееву послужили атомные массы (атомные веса) элементов. После Всемирного конгресса химиков в 1860 году, в работе которого участвовал и Д. И. Менделеев, проблема правильного определения атомных весов была постоянно в центре внимания многих ведущих химиков мира, в том числе и Д. И. Менделеева. Располагая элементы в порядке возрастания их атомных весов, Д. И. Менделеев обнаружил фундаментальный закон природы, который теперь известен как Периодический закон:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 561; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.110.182 (0.012 с.) |