Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Класс липопротеинов их состав и ф-ии в транспорте липидовСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Гликопротеины (ГП)– комплекс белков с углеводными комплексами, где на долю углеводов приходится 2-20%. Углеводы представлены гетерополисахаридами, не имеющих системного строения (не происходит повторения углеводного фрагмента). До 15 видов моносахаридов могут присутствовать в этих гетерополисахаридах: глюкоза, галактоза, глюкозамин, галактозамин, глюкуроновая кислота, нейраминовая кислота (ПВК+маннозамин).
В качестве исключения к группе ГП относят ГП крови, которые определяют группу крови. В них на углеводную часть приходится до 80%, т.к. углеводный компонент не имеет регулярного строения. В этих белках между белковой и небелковой частями ковалентная связь, которая может быть разной по природе: - гликозил-амидная: моносахариды связаны с амидной группой аспарагина (АСП). Такая связь в белках – иммуноглобулинах, гормонах и т.д. - О-гликозидная: моносахарид образует гликозидную связь с гидроксилсодержащей АК – СЕР, ТРЕ. Такая связь характерна для муцина слюны, групповых веществ крови. Также этот тип связи может образовываться при взаимодействии моносахарида с ОН-группой окси-ПРО – в коллагеновых белках. Свойства ГП: 1. термостабильность, т.е. при увеличении и уменьшении температуры белки не денатурируют; 2. плохо перевариваются трипсином и пепсином в ЖКТ; 3. специфичность молекулы – из них построены «узнающие участки» (узнают макромолекулы или участки поверхности клеток); 4. быстро выводятся из клеток и находятся в межклеточной жидкости или на поверхности клеточных мембран. Биологическая роль ГП: 1. транспортная роль - связываются с различными веществами и переносят их. Пр.: ГП трансферин переносит ионы железа, церулоплазмин – переносит ионы меди, транскортин - гормоны. 2. каталитическая. ГП-ми являются многие ферменты. Пр.: пероксидаза, рибонуклеаза, энтерокиназа, холинэстераза. 3. защитная - входят в состав различных слизей, например муцин слюны. 4. свёртывающая. Пр.: фибриноген, протромбин участвуют в системе свертывания крови. 5. определяют группу крови. От строения нуклеотидных цепей ГП зависит специфичность ГП, определяющего группу крови. 6. ГП клеточной мембраны выделяются рецепторами и участвуют в механизмах межклеточного взаимодействия и узнавания.
7. регуляторная – некоторые гормоны являются ГП. Пр.: гонадотропный гормон, фолликулостимулирующий гормон. Протеогликаны (ПГ). Углеводный компонент приходится 95%. Углеводные компоненты представлены линейными гетерополисахаридами системного строения. Их строение однотипно. Структурная единица – димер, состоящий из моносахаридов 2-х видов, которые, соединяясь, образуют структурную единицу полисахаридов. [рис. МС 1 и МС 2 соеденены между собой -1,3-гликозидной связью, а сами эти фрагменты - собой -1,4-гликозидной связью] МС1 – глюкуроновая кислота, МС2 – N-ацетилгексозамин Среди гетероплисахаридов, входящих в состав ПГ, основными являются: гиалуроновая кислота, хондроитинсульфаты, гепарин и др. Гиалуроновая кислота. Полимер, структурная единица – димер, состоящий из глюкуроновой кислоты и N-ацетилглюкозамина. Хондроитинсульфаты (ХС). Это полимеры, структурной единицей которых является димер, состоящий из глюкуроновой кислоты и N-ацетилгалактозамина (сульфатирован по 4 или 6 положению). ХС-ты входят в состав опорной, костной ткани, хрящей, сухожилий. Наличие сульфатной группировки и ОН-группы глюкуроновой кислоты придаёт этим соединениям дополнительные отрицательные заряды в растворе, и эти полимеры являются полианионами. Поэтому они легко притягивают Са2+ и таким образом в процессах минерализации играют определённую роль в связывании Са. В межклеточном матриксе протеогликаны организованы в своеобразные комплексы («ерш из ершиков»). Такой комплекс содержит до 160 протеогликанных единиц. Гепарин. Полимер, структурной единицей является димер, состоящий из глюкуроновой кислоты, связанной с N-ацетилглюкозамином, сульфатированым 4 или по 6 положению серной кислотой. Гепарин не является структурным компонентом межклеточного матрикса. Он вырабатывается тучными клетками соединительной ткани и после их цитолиза выделяется в межклеточное пространство и кровеносное русло. В крови может соединяться с неспецифическими белками. Гепарин – естественный природный коагулянт, препятствует свёртыванию крови. ПГ выполняют следующую роль: 1. роль «рессор» – смягчают нагрузки на суставные поверхности (в хрящах, суставных поверхностях);
2. ограничивают диффузию и проницаемость межклеточного вещества для различных молекул и крупных частиц. Гиалуроновая кислота подвергается гидролизу под действием фермента – гиалуронидазы. В норме, в здоровой ткани, фермент и субстрат находятся в равновесии. при патологических процессах количество фермента может увеличится, что приводит к гидролизу гиалуроновой кислоты и нарушению проницаемости. При этом разрываются -1,4-гликозидные связи; 3. являются поливалентными анионами. Способны связывать большие количества ионов Na+ и др. катионов и участвуют в регуляции водно-солевого обмена; 4. Гиалуроновая кислота может присутствовать в свободном виде, например в хрусталике глаза, суставной жидкости. Она имеет консистенцию геля и выполняет различные функции. Галактоземия,причины, сущность проявления болезни. Гала́ктоземи́я — наследственное заболевание, в основе которого лежит нарушение обмена веществ на пути преобразования галактозы в глюкозу (мутация структурного гена, ответственного за синтез фермента галактозо-1-фосфатуридилтрансферазы). Галактоза, поступающая с пищей в составе молочного сахара — лактозы, подвергается превращению, но реакция превращения не завершается в связи с наследственным дефектом ключевого фермента. Галактоза и её производная накапливаются в крови и тканях, оказывая токсическое действие на центральную нервную систему, печень и хрусталик глаза, что определяет клинические проявления болезни. Тип наследования галактоземии аутосомно-рецессивный. Заболевание проявляется в первые дни и недели жизни выраженной желтухой, увеличением печени, неврологической симптоматикой (судороги, нистагм (непроизвольное движение глазных яблок), гипотония мышц), рвотой; в дальнейшем обнаруживается отставание в физическом и нервно-психическом развитии, возникает катаракта. Тяжесть заболевания может значительно варьировать; иногда единственным проявлением галактоземии бывают лишь катаракта или непереносимость молока. Один из вариантов болезни — форма Дюарте — протекает бессимптомно, хотя отмечена склонность таких лиц к хроническим заболеваниям печени. При лабораторном исследовании в крови определяется галактоза, содержание которой может достигать 0,8 г/л; специальными методами (хроматография) удается обнаружить галактозу в моче. Активность ферментов в эритроцитах резко снижена или не определяется, содержание ферментов увеличено в 10—20 раз по сравнению с нормой. При наличии желтухи нарастает содержание как прямого (диглюкуронида), так и непрямого (свободного) билирубина Значительно снижается сопротивляемость по отношению к инфекции. Возможно проявление и геморагического диатеза из-за уменьшения протеиносинтетической функции печени и уменьшения числа тромбоцитов — петехии. Челночные механизы и их роль в обеспечени безперебойного функционирования и регуляции метаболитических процессов. Важность существания пулов в ключевых метаболитов и носителей энергии, их участие в запуске и контроля обмене в-в. Челночные механизмы переноса НАДН из цитозоля в матрикс митохондрий.Образующийся в ходе аэробного окисления каждый НАДН отдает протоны и электроны в митохондриальную цепь переноса электронов с помощью челночных механизмов (см. наглядный материал): малат-аспартатного и глицеролфосфатного. В случае малат-аспартатного челнока митохондриальным акцептором протонов и электронов является НАД+, в случае глицерофосфатного– ФАД+. При работе малат-аспартатного челнока в результате реакций окислительного фосфорилирования, сопряженного с цепью переноса электронов, образуется 3 АТФ (в полной ц.п.э.) или 2 АТФ (в редуцированной ц.п.э.), в случае глицерофосфатного челнока. Следовательно, врезультате первого этапа окисления глюкозы образуется 2 АТФ (7-ая и 10-ая реакции гликолиза –субстратное фосфорилирование) + 2 х [3 (или 2)] АТФ при окислении каждого НАДН в ц.п.э. = 8(или 6) АТФ
60. преваривание и всасывание липидов в ЖКТ, транспорт в кровотоке. Расщепление триглицеридов в пищеварительном тракте. Слюна не содержит расщепляющих жиры ферментов. Следовательно, в полости рта жиры не подвергаются никаким изменениям. У взрослых людей жиры проходят через желудок также без особых изменений. В желудочном соке содержится липаза, получившая название желудочной, однако роль ее в гидролизе пищевых триглицеридов у взрослых людей невелика. Во-первых, в желудочном соке взрослого человеа и других млекопитающих содержание липазы крайне низкое. Во-вторых, рН желудочного сока далек от оптимума действия этого фермента (оптимальное значение рН для желудочной липазы 5,5–7,5). Напомним, что значение рН желудочного сока около 1,5. В-третьих, в желудке отсутствуют условия для эмульгирования триглицеридов, а липаза может активно действовать только на триглицериды, находящиеся в форме эмульсии. Поэтому у взрослых неэмульгированные триглицериды, составляющие основную массу пищевого жира, проходят через желудок без особых изменений. Вместе с тем расщепление триглицеридов в желудке играет важную роль в пищеварении у детей, особенно грудного возраста. Слизистая оболочка корня языка и примыкающей к нему области глотки ребенка грудного возраста секретирует собственную липазу в ответ на сосательные и глотательные движения. Лингвальная липаза наиболее активно действует на триглицериды, содержащие жирные кислоты с короткой и средней длиной цепи, что характерно для триглицеридов молока. Иными словами, жир молока – самый подходящий субстрат для этого энзима. У взрослых активность лингвальной липазы крайне низкая. Расщепление триглицеридов в желудке взрослого человека невелико, но оно в определенной степени облегчает последующее переваривание их в кишечнике. Даже незначительное по объему расщепление триглицеридов в желудке приводит к появлению свободных жирных кислот, которые, не подвергаясь всасыванию в желудке, поступают в кишечник и способствуют
там эмульгированию жиров, облегчая таким образом воздействие на них липазы панкреатического сока. Наиболее мощное эмульгирующее действие на жиры оказывают соли желчных кислот, попадающие в двенадцатиперстную кишку с желчью в виде натриевых солей. Большая часть желчных кислот конъюгирована с глицином или таурином. По химической природе желчные кислоты являются производными холановой кислоты. Желчные кислоты представляют собой основной конечный продукт метаболизма холестерина. В желчи человека в основном содержатся холевая (3,7,12-триоксихолановая), дезоксихолевая (3,12-диоксихолановая) и хенодезоксихолевая (3,7-диоксихолановая) кислоты. Известно, что основная масса пищевых глицеридов подвергается расщеплению в верхних отделах тонкой кишки при действии липазы панкреатического сока. Панкреатическая липаза расщепляет триглицериды, находящиеся в эмульгированном состоянии (действие фермента на растворенные субстраты значительно слабее). Как и другие пищеварительные ферменты (пепсин, трипсин, химотрипсин), панкреатическая липаза поступает в верхний отдел тонкой кишки в виде неактивной пролипазы. Превращение пролипазы в активную липазу происходит при участии желчных кислот и еще одного белка панкреатического сока – колипазы. Всасывание триглицеридов и продуктов их расщепления. Всасывание происходит в проксимальной части тонкой кишки. Тонкоэмульгированные жиры (величина жировых капель эмульсии не должна превышать 0,5 мкм) частично могут всасываться через стенки кишечника без предварительного гидролиза. Основная часть жира всасывается лишь после расщепления его панкреатической липазой на жирные кислоты, моноглицериды и глицерин. Жирные кислоты с короткой углеродной цепью (менее 10 атомов углерода) и глицерин, будучи хорошо растворимыми в воде, свободно всасываются в кишечнике и поступают в кровь воротной вены, оттуда в печень, минуя какие-либо превращения в кишечной стенке. Более сложно происходит всасывание жирных кислот с длинной углеродной цепью и моноглицеридов. Этот процесс осуществляется при участии желчи и главным образом желчных кислот, входящих в ее состав. транспорт липидов. Ресинтезированные в эпителиальных клетках кишечника триглицериды и фосфолипиды, а также поступивший в эти клетки из полости кишечника холестерин (здесь он может частично эстерифицироваться) соединяются с небольшим количеством белка и образуют относительно стабильные комплексные частицы – хиломикроны (ХМ). Последние содержат около 2% белка, 7% фосфолипидов, 8% холестерина и его эфиров и более 80% триглицеридов. Диаметр ХМ колеблется от 0,1 до 5 мкм. Благодаря большим размерам частиц ХМ не способны проникать из эндотелиальных клеток кишечника в кровеносные капилляры и диффундируют в лимфатическую систему кишечника, а из нее – в грудной лимфатический проток. Затем из грудного лимфатического протока ХМ попадают в кровяное русло, т.е. с их помощью осуществляется транспорт экзогенных триглицеридов, холестерина и частично фосфолипидов из кишечника через лимфатическую систему в кровь. Уже через 1–2 ч после приема пищи, содержащей жиры, наблюдается алиментарнаягиперлипемия. Это физиологическое явление, характеризующееся в первую очередь повышением концентрации триглицеридов
в крови и появлением в ней ХМ. Пик алиментарной гиперлипемии наблюдается через 4–6 ч после приема жирной пищи. Обычно через 10–12 ч после приема пищи содержание триглицеридов возвращается к нормальным величинам, а ХМ полностью исчезают из кровяного русла. 61.классификация липидов, их химические свойства и биологические функции. Липиды представляют собой обширную группу соединений, существенно различающихся по своей химической структуре и функциям. Поэтому трудно дать единое определение, которое подошло бы для всех соединений,относящихся к этому классу. Можно сказать, что липиды представляют собой группу веществ, которые характеризуются следующими признаками: нерастворимостью в воде; растворимостью в неполярных растворителях, таких, как эфир, хлороформ или бензол; содержанием высших алкильных радикалов; распространенностью в живых организмах. Под это определение попадает большое количество веществ, в том числе такие, которые обычно причисляют к другим классам соединений: например, жирорастворимые витамины и их производные, каротиноиды, высшие углеводороды и спирты. Включение всех этих веществ в число липидов в известной степени оправдано, потому что в живых организмах они находятся вместе с липидами и вместе с ними
\фосфолипиды, стерины, сфинголипиды и др. Биологическая роль липидов. Липиды играют важнейшую роль в процессах жизнедеятельности. Будучи одним из основных компонентов биологических мембран, липиды влияют на их проницаемость, участвуют в передаче нервного импульса, создании межклеточных контактов. Жир служит в организме весьма эффективным источником энергии либо при непосредственном использовании, либо потенциально – в форме запасов жировой ткани. В натуральных пищевых жирах содержатся жирорастворимые витамины и «незаменимые» жирные кислоты. Важная функция липидов – создание термоизоляционных покровов у животных и растений, защита органов и тканей от механических воздействий. Классификация липидов. Существует несколько классификаций липидов. Наибольшее распространение получила классификация, основанная на структурных особенностях липидов. По этой классификации различают следующие основные классылипидов. A. Простые липиды: сложные эфиры жирных кислот с различными спиртами. 1. Глицериды (ацилглицерины, или ацилглицеролы – по международной номенклатуре) представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот. 2. Воска: сложные эфиры высших жирных кислот и одноатомных или двухатомных спиртов. Б. Сложные липиды: сложные эфиры жирных кислот со спиртами, дополнительно содержащие и другие группы. 1. Фосфолипиды: липиды, содержащие, помимо жирных кислот и спирта, остаток фосфорной кислоты. В их состав часто входят азотистые основания и другие компоненты: а) глицерофосфолипиды (в роли спирта выступает глицерол); б) сфинголипиды (в роли спирта – сфингозин). 2. Гликолипиды (гликосфинголипиды). 3. Стероиды. 4. Другие сложные липиды: сульфолипиды, аминолипиды. К этому классу можно отнести и липопротеины. B. Предшественники и производные липидов: жирные кислоты, глицерол, стеролы и прочие спирты (помимо глицерола и стеролов), альдегиды жирных кислот, углеводороды, жирорастворимые витамины и гормоны.
БИООКИСЛЕНИЕ ЖИРНЫХ КИСЛОТ Окисление жирных кислот в организмах - чрезвычайно важный процесс, он может протекать по α-, β- и ω-углеродным атомам жирных кислот. Основной путь окисления жирных кислот как в животных, так и в растительных тканях - это β-окисление. β-Окисление жирных кислот. β-Окисление жирных кислот было впервые изучено в 1904 г. Ф. Кноопом. В дальнейшем было установлено, что β- окисление осуществляется только в митохондриях. Благодаря работам Ф. Линена с сотрудниками (1954-1958 гг.) были выяснены основные ферментативные процессы окисления жирных кислот. В честь ученых, открывших данный путь окисления жирных кислот, процесс β-окисление получил название цикла Кноопа-Линена. По современным представлениям, процессу окисления жирных кислот предшествует их активация в цитоплазме с участием ацил-КоА-синтетазыи с использованием энергии АТФ: В форме ацил-КоА жирные кислоты поступают в митохондрии, в матриксе которых они подвергаются β-окислению, включающему последовательность нижеприведенных ферментативных окислительно-восстановительных реакций. Первой реакцией на пути расщепления жирных кислот является дегидрирование с образованием транс-2,3-ненасыщенных производных, катализируемое различными ФАД-содержащими ацил-КоА-дегидрогеназами Вторая реакция - гидратация двойной связи - катализируется еноил-КоА - гидратазой: На следующей (третьей) стадии происходит дегидрирование спиртового фрагмента, которое осуществляется соответствующей дегидрогеназой и окисленной формой кофермента НАД:
В результате окисления образуется β-оксокислота, из-за чего весь процесс в целом и получил название β-окисления. Четвертая, последняя реакция, катализируемая тиолазой, сопровождается окислительно-восстановительным расщеплением связи Сα-Сβ с отщеплением ацетил-КоА и присоединением остатка КоА по месту разрыва межуглеродной связи: Эта реакция носит название тиолиза и является высоко экзергонической, поэтому равновесие в ней всегда смещено в сторону образования продуктов. Последовательное повторение этого цикла реакций приводит к полному распаду жирных кислот с четным числом атомов углерода до ацетил-КоА. В результате этого процесса образуются ацетил-КоА, ФАДН2 и НАД-Н. Далее ацетил-КоА вступает в цикл Кребса, а восстановленные коферменты - в дыхательную цепь. Особенности окисления жирных кислот с нечетным числом углеродных атомов заключается в том, что наряду с обычными продуктами окисления, образуется одна молекула СН3-СН2-СО~SКоА (пропионил-КоА), которая в процессе карбоксилирования переводится в сукцинил-КоА, поступающий в цикл Кребса. Особенности окисления ненасыщенных жирных кислот определяются положением и числом двойных связей в их молекулах. До места двойной связи ненасыщенные жирные кислоты окисляются так же, как и насыщенные. Если двойная связь имеет ту же транс-конфигурацию и расположение, что и еноил-КоА, то далее окисление идет по обычному пути. В противном случае в реакциях участвует дополнительный фермент, который перемещает двойную связь в нужное положение и изменяет конфигурацию молекулы кислоты. При β-окислении жирных кислот выделяется большое количество энергии. При полном окислении одного моля жирной кислоты, содержащей 2n атомов углерода, образуется n молей ацетил-КоА и (n-1) молей (ФАДН2 + НАДН). Окисление ФАДН2 дает 2АТФ, а при окислении НАДН образуется 3АТФ. Полное сгорание одного моля ацетил-КоА приводит к образованию 12 молей АТФ.
|
|||||||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 539; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.117.89 (0.024 с.) |