Ренатурация (или ренативация) 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ренатурация (или ренативация)



Долгое время считалось, что процесс денатурации белков необратим. Однако оказалось, что некоторые очищенные и денатурированные белки способны в опытных условиях восстанавливать конформацию при удалении денатурирующих агентов.

процесс денатурации белков может быть обратимым. Это открытие было сделано при изучении денатурации рибонуклеазы — фермента, расщепляющего связи между нуклеотидами в РНК. Рибонуклеаза — глобулярный белок, содержащий одну полипептидную цепь, состоящую из 124 аминокислотных остатков. Его конформацию стабилизируют 4 дисульфидные и множество слабых связей.

Обработка рибонуклеазы меркаптоэтанолом (формула меркаптоэтанола - НО-СН2-СН2-SH) приводит к разрыву дисульфидных связей и восстановлению SH-групп цистеиновых остатков, что нарушает компактную структуру белка. Добавление 8 М раствора мочевины или 6 М раствора гуанидинхлорида, вызывающих разрыв слабых связей в белке и образование новых водородных связей с денатурирующими агентами, приводит к образованию случайным образом свёрнутых полипептидных цепей рибонуклеазы, лишённых ферментативной активности, т.е. к денатурации фермента. Денатурирующие агенты не разрушают первичную структуру белка.

Однако если путём диализа очистить белок от денатурирующих агентов, его ферментативная активность постепенно восстанавливается. Этот процесс называется ренатурацией, или ренативацией белка.

Возможность ренативации впоследствии была доказана и для других белков, в частности миоглобина. Сохранность первичной структуры белка — необходимое условие для восстановления его конформации. На основании этих опытов был выведен фундаментальный принцип молекулярной биологии: аминокислотная последовательность белков определяет их конформацию и специфическую функцию.

Формирование пространственной структуры белка — самопроизвольный процесс, при котором белок стремится принять в данных условиях конформацию с наименьшей свободной энергией. Изменение условий окружающей среды или изменение первичной структуры данного белка могут привести к изменению его конформации и функции.

 

Методы выделения и очистки белков

Получение индивидуальных белков из биологического материала (тканей, органов, клеточных культур) требует проведения последовательных операций, включающих:

дробление биологического материала и разрушение клеточных мембран;

фракционирование органелл, содержащих те или иные белки;

экстракцию белков (перевод их в растворённое состояние);

разделение смеси белков на индивидуальные белки.

 

1. Методы разрушения тканей

И экстракции белков

Для разрушения биологического материала используют методы: гомогенизации ткани, метод попеременного замораживания и оттаивания, а также обработку клеток ультразвуком.

 

Гомогенизация биологического материала

Ткань, находящуюся в буферном растворе с определённым значением рН и концентрацией солей, помещают в стеклянный сосуд (гомогенизатор) с пестиком. Вращающийся пестик измельчает и растирает ткань о притёртые стенки сосуда.

 

Метод замораживания и оттаивания ткани

В результате попеременного замораживания и оттаивания образующиеся кристаллы льда разрушают оболочки клеток.

После разрушения ткани нерастворимые части осаждают центрифугированием. Последующее центрифугирование гомогената с разной скоростью позволяет получить отдельные фракции, содержащие клеточные ядра, митохондрии и другие органеллы, а также надосадочную жидкость, в которой находятся растворимые белки цитозоля клетки. Искомый белок будет содержаться в одной из этих фракций.

 

Экстракция белков, связанных с мембранами, и разрушение олигомерных белков на протомеры

Если искомый белок прочно связан с какими-либо структурами клетки, его необходимо перевести в раствор. Так, для разрушения гидрофобных взаимодействий между белками и липидами мембран в раствор добавляют детергенты; чаще всего используют тритон Х-100 или додецилсульфат натрия.

Механизм действия детергентов описан в разделе "Денатурация белков" (см. рис. 1-15). При действии детергентов обычно разрушаются и гидрофобные взаимодействия между протомерами в олигомерных белках.

Удаление из раствора небелковых веществ

Нуклеиновые кислоты, липиды и другие небелковые вещества можно удалить из раствора, используя их Особенные физико-химические свойства. Так, липиды легко удаляются из раствора добавлением органических растворителей, например ацетона. Однако воздействие должно быть кратковременным, так как ацетон вызывает денатурацию некоторых белков. Нуклеиновые кислоты осаждают добавлением в раствор стрептомицина.

Методы очистки белков

Наиболее трудоёмкий этап получения индивидуальных белков - их очистка от других белков, находящихся в растворе, полученном из данной ткани. Часто изучаемый белок присутствует в небольших количествах, составляющих доли процента от всех белков раствора.

Так как белки обладают конформационной лабильностью, при работе с белками следует избегать денатурирующих воздействий, поэтому выделение и очистка белков происходят при низких температурах.

На первых стадиях очистки белков целесообразно использовать методы, учитывающие какую-либо характерную особенность данного белка, например термостабильность или устойчивость в кислых растворах. Первыми методами очистки необходимо удалить из раствора основную массу балластных белков, которые значительно отличаются от выделяемого белка физико-химическими свойствами. Впоследствии применяют всё более тонкие методы очистки белка.

 

 

Физико-химические свойства белков:масса,размеры и форма молекул;растворимость,ионизация,гидратация.Методы исследования белков(качественные и количественные)

Индивидуальные белки различаются по своим физико-химическим свойствам: форме молекул, молекулярной массе, суммарному заряду молекулы, соотношению полярных и неполярных групп на поверхности нативной молекулы белка, растворимости белков, а также степени устойчивости к воздействию денатурирующих агентов.

 

Различия белков по форме молекул

 

Как уже говорилось выше, по форме молекул белки делят на глобулярные и фибриллярные. Глобулярные белки имеют более компактную структуру, их гидрофобные радикалы в большинстве своём спрятаны в гидрофобное ядро, и они значительно лучше растворимы в жидкостях организма, чем фибриллярные белки (исключение составляют мембранные белки).

 

Различия белков по молекулярной массе

Белки - высокомолекулярные соединения, но могут сильно отличаться по молекулярной массе, которая колеблется от 6000 до 1 000 000 Д и выше. Молекулярная масса белка зависит от количества аминокислотных остатков в полипептидной цепи, а для олигомерных белков - и от количества входящих в него протомеров (или субъединиц).

 

Суммарный заряд белков

Белки имеют в своём составе радикалы лизина, аргинина, гистидина, глутаминовой и аспарагиновой кислот, содержащие функциональные группы, способные к ионизации (ионогенные группы). Кроме того, на N- и С-концах полипептидных цепей имеются α-амино- и α-карбоксильная группы, также способные к ионизации. Суммарный заряд белковой молекулы зависит от соотношения ионизированных анионных радикалов Глу и Асп и катионных радикалов Лиз, Apr и Гис.

Степень ионизации функциональных групп этих радикалов зависит от рН среды. При рН раствора около 7 все ионогенные группы белка находятся в ионизированном состоянии. В кислой среде увеличение концентрации протонов (Н+) приводит к подавлению диссоциации карбоксильных групп и уменьшению отрицательного заряда белков: -СОО- + Н+ → -СООН. В щелочной среде связывание избытка ОН" с протонами, образующимися при диссоциации NH3+с образованием воды, приводит к уменьшению положительного заряда белков:

-NH3+ +ОН- → -NH2 + H2O.

Значение рН, при котором белок приобретает суммарный нулевой заряд, называют "изоэлектрическая точка" и обозначают как pI. В изоэлектрической точке количество положительно и отрицательно заряженных групп белка одинаково, т.е. белок находится в изоэлектрическом состоянии.

Так как большинство белков в клетке имеет в своём составе больше анионогенных групп (-СОО-), то изоэлектрическая точка этих белков лежит в слабокислой среде. Изоэлектрическая точка белков, в составе которых преобладают катионогенные группы, находится в щелочной среде. Наиболее яркий пример таких внутриклеточных белков, содержащих много аргинина и лизина, - гистоны, входящие в состав хроматина.

Белки, имеющие суммарный положительный или отрицательный заряд, лучше растворимы, чем белки, находящиеся в изоэлектрической точке. Суммарный заряд увеличивает количество диполей воды, способных связываться с белковой молекулой, и препятствует контакту одноимённо заряженных молекул, в результате растворимость белков увеличивается. Заряженные белки могут двигаться в электрическом поле: анионные белки, имеющие отрицательный заряд, будут двигаться к положительно заряженному аноду (+), а катионные белки - к отрицательно заряженному катоду (-). Белки, находящиеся в изоэлектрическом состоянии, не перемещаются в электрическом поле.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 2246; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.254.94 (0.008 с.)