Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Источники энергии мышечного сокращения.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Скелетная мышца, работающая с максимальной интенсивностью, потребляет в сотни раз больше энергии, чем покоящаяся, причем переход от состояния покоя к состоянию максимальной работы происходит за доли секунды. В связи с этим у мышц совсем по-другому построен механизм изменения скорости синтеза АТФ в очень широких пределах. Как уже упоминалось при мышечном сокращении большое значение имеет процесс синтеза АТФ из АДФ, высвобождаемых из миозиновых головок. Это происходит при помощи, имеющегося в мышцах высокоэнергетического вещества креатинфосфата, которое образуется из креатина и АТФ при действии креатинкиназы: NH NH II II C-NH2 C-NH-PO3H2 I I N-CH3+АТФ (N-CH3 + АДФ I I CH2 CH2 I I COOH COOH
Креатин Креатинфосфат Эта реакция легко обратима и идет анаэробно, что обеспечивает быстрое включение мышц в работу на ранних этапах. При продолжении нагрузки роль такого энергетического обеспечения снижается, а на его замену приходят гликогеновые механизмы обеспечения большим количеством АТФ.
Энергообеспечение мышечной работы при физических нагрузках различной интенсивности. Сокращение и расслабление мышцы нуждаются в энергии, которая образуется при гидролизе молекул АТФ.
Однако запасы АТФ в мышце незначительны, их достаточно для работы мышцы в течении 2 секунд. Образование АТФ в мышцах называется ресинтезом АТФ.
Таким образом, в мышцах идет два параллельных процесса – гидролиз АТФ и ресинтез АТФ.
Ресинтез АТФ в отличие от гидролиза может протекать разными путями, а всего, в зависимости от источника энергии их выделяют три: аэробный (основной), креатинфосфатный и лактатный.
Для количественной характеристики различных путей ресинтеза АТФ обычно используют несколько критериев.
^ 1. Максимальная мощность или максимальная скорость – это наибольшее количество АТФ, которое может образоваться в единицу времени за счет данного пути ресинтеза. Измеряется максимальная мощность в калориях или джоулях, исходя из того что один ммоль АТФ соответствует физиологическим условиям примерно 12 кал или 50 Дж. Поэтому данный критерий имеет размерность кал/мин-кг мышечной ткани или Дж/мин-кг мышечной ткани.
^ 2. Время развертывания – это минимальное время, необходимое для выхода ресинтеза АТФ на свою наибольшую скорость, то есть для достижения максимальной мощности. Этот критерий измеряется в единицах времени.
^ 3. Время сохранения или поддержания максимальной мощности – это наибольшее время функционирования данного пути ресинтеза АТФ с максимальной мощностью.
^ 4. Метаболическая ёмкость – это общее количество АТФ, которое может образоваться во время мышечной работы за счет данного пути ресинтеза АТФ.
В зависимости от потребления кислорода пути ресинтеза делятся на аэробные и анаэробные.
§ 2. Аэробный путь ресинтеза АТФ.
Аэробный путь ресинтеза АТФ иначе называется тканевым дыханием – это основной способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнимаются два атома водорода и по дыхательной цепи передаются на молекулярный кислород, доставляемый в мышцы кровью, в результате чего возникает вода. За счет энергии, выделяющейся при образовании воды, происходит синтез молекул АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез трех молекул АТФ.
Чаще всего водород отнимается от промежуточных продуктов цикла трикарбоновых кислот (ЦТК). ЦТК – это завершающий этап катаболизма в ходе которого происходит окисление ацетилкофермента А до углекислого газа и воды. В ходе этого процесса от перечисленных выше кислот отнимается четыре пары атомов водорода и поэтому образуется 12 молекул АТФ при окислении одной молекулы ацетилкофермента А.
В свою очередь ацетилкофермент А может образовываться из углеводов, жиров аминокислот, то есть через это соединение в ЦТК вовлекаются углеводы, жиры и аминокислоты.
Скорость аэробного обмена АТФ контролируется содержанием в мышечных клетках AДФ, который является активатором ферментов тканевого дыхания. При мышечной работе происходит накопление AДФ. Избыток AДФ ускоряет тканевое дыхание, и оно может достигнуть максимальной интенсивности.
Другим активатором ресинтеза АТФ является углекислый газ. Избыток этого газа в крови активирует дыхательный центр головного мозга, что в итоге приводит к повышению скорости кровообращения и улучшению снабжения мышцы кислородом.
^ Максимальная мощность аэробного пути составляет 350 -450 кал/мин-кг. По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание облает более низкими показателями, что ограничено скоростью доставки кислорода в мышцы. Поэтому за счет аэробной пути ресинтеза АТФ могут осуществляться только физические нагрузки умеренной мощности.
^ Время развертывания составляет 3 – 4 минуты, но у хорошо тренированных спортсменов может составлять 1 мин. Это связано с тем, что на доставку кислорода в митохондрии требуется перестройка практически всех систем организма.
^ Время работы с максимальной мощностью составляет десятки минут. Это дает возможность использовать данный путь при длительной работе мышц.
По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный путь имеет ряд преимуществ.
1. Экономичность: из одной молекулы гликогена образуется 39 молекул АТФ, при анаэробном гликолизе только 3 молекулы.
2. Универсальность в качестве начальных субстратов здесь выступают разнообразные вещества: углеводы, жирные кислоты, кетоновые тела, аминокислоты.
3. Очень большая продолжительность работы. В покое скорость аэробного ресинтеза АТФ может быть небольшой, но при физических нагрузках она может стать максимальной.
Однако есть и недостатки.
1. Обязательное потребление кислорода, что ограничено скоростью доставки кислорода в мышцы и скоростью проникновения кислорода через мембрану митохондрий.
2. Большое время развертывания.
3. Небольшую по максимальной величине мощность.
Поэтому мышечная деятельность, свойственная большинству видов спорта, не может быть полностью получена этим путем ресинтеза АТФ.
В спортивной практике для оценки аэробного ресинтеза используются следующие показатели: максимальное потребление кислорода (МПК), порог аэробного обмена (ПАО), порог анаэробного обмена (ПАНО) и кислородный приход.
МПК – это максимально возможная скорость потребления кислорода организмом при выполнение физической работы. Чем выше МПК, тем выше скорость тканевого дыхания. Чем тренированнее человек, тем выше МПК. МПК рассчитывают обычно на 1кг массы тела. У людей, не занимающихся спортом МПК 50 мл/мин-кг, а у тренированных людей он достигает 90 мл/мин-кг.
В спортивной практике МПК также используется для характеристики относительной мощности аэробной работы, которая выражается в процентах от МПК. Например, относительная мощность работы, выполняемая с потреблением кислорода 3 л/мин спортсменом, имеющим МПК 6 л/мин, будет составлять 50% от уровня МПК.
ПАО – это наибольшая относительная мощность работы, измеряемая по потреблению кислорода в процентах по отношению к МПК. Большие величины ПАО говорят о лучшем развитии аэробного ресинтеза.
ПАНО – это минимальная относительная мощность работы, также измеренная по потреблению кислорода в процентах по отношению к МПК. Высокое ПАНО говорит о том, что аэробный ресинтез выше в единицу времени, поэтому гликолиз включается при гораздо больших нагрузках.
Кислородный приход – это количество кислорода (сверх дорабочего уровня), использованное во время выполнения данной нагрузки для обеспечения аэробного ресинтеза АТФ. Кислородный приход характеризует вклад тканевого дыхания в энергообеспечение всей проделанной работы. Кислородный приход часто используют для оценки всей проделанной аэробной работы.
Под влиянием систематических тренировок в мышечных клетках возрастает количество митохондрий, совершенствуется кислородно-транспортная функция организма, возрастет количество миоглобина в мышцах и гемоглобина в крови.
§ 3. Анаэробные пути ресинтеза АТФ.
Анаэробные пути ресинтеза АТФ – это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.
Креатинфосфатный путь связан с веществом креатинфосфатом. Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 – 20 ммоль/кг.
Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.
^ Креатинфосфат + АДФ → креатин + АТФ.
Эта реакция катализируется ферментом креатинкиназой. Данный путь ресинтеза АТФ иногда называют креатикиназным.
Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.
Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.
Максимальная мощность этого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.
^ Время развертывания всего 1 – 2 сек. Время работы с максимальной скоростью всего лишь 8 – 10 сек. Главным преимуществом креатинфосфатного пути образования АТФ являются малой время развертывания, высокая мощность.
Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.
Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.
^ Креатиновый коэффициент – это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.
Алактатный кислородный долг – это повышение потребления кислорода в ближайшие 4 – 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 – 10 л.
Гликолитический путь ресинтеза АТФ, так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.
^ Максимальная мощность – 750 – 850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.
^ Время развертывания 20-30 секунд.
Время работы с максимальной мощностью – 2 -3 минуты.
Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:
он быстрее выходит на максимальную мощность,
имеет более высокую величину максимальной мощности,
не требует участия митохондрий и кислорода.
Однако у этого пути есть и свои недостатки:
процесс малоэкономичен,
накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.
Для оценки гликолиза используют две биохимические методики – измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.
Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.
Еще одним важным показателем является лактатный кислородный долг. Лактатный кислородный долг – это повышенное потребление кислорода в ближайшие 1 – 1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20 – 22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 541; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.98.29 (0.014 с.) |