Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сегмент 13. Трансформация и использование энергииСодержание книги
Поиск на нашем сайте
Итак, материальная сущность жизни проявляется, прежде всего, в непрерывном обмене веществ и энергии, который происходит между живой системой (клеткой, организмом, биоценозом) и окружающей его внешней средой. В этом смысле биологические системы являются открытыми. Разные организмы потребляют разные виды энергии, в связи с чем их делят на аутотрофные и гетеротрофные. Аутотрофные организмы (дословно - самопитающиеся) способны поглощать энергию неживой природы. Прежде всего это зеленые растения, а также бурые, красные и сине-зеленые водоросли, использующие солнечный свет для процесса фотосинтеза - образования органического вещества глюкозы из неорганических воды и углекислого газа. К аутотрофам относятся также некоторые бактерии, способные к реакциям хемосинтеза - синтеза органических веществ за счет энергии простых химических реакций. При этом первичная энергия (солнечная или химическая) преобразуется в энергию химических связей сложных органических молекул, так что аутотрофы как бы сами создают себе пищу. Гетеротрофные организмы (питающиеся за счет других) - человек, все животные, грибы, а также многие бактерии - получают пищу в виде готовых органических веществ, произведенных аутотрофами, в основном растениями. В составе этой пищи они получают и энергию, заключенную в химических связях. Если органическое вещество пищи расщепить на более простые вещества, освобождается энергия. По сути гетеротрофы получают ту же солнечную энергию, но преобразованную зелеными растениями в химическую. Отсюда ясна огромная роль растительных организмов как посредника в энергетическом обеспечении животных и человека. Избавиться от этой зависимости, получать какую-либо энергию прямо из неживой природы человечество еще не научилось. И хотя академик В. И. Вернадский выдвигал такую научную задачу, дальше фантастических произведений дело не продвинулось и вряд ли продвинется в обозримом будущем. Поэтому для биологов всего мира одной из приоритетных задач остается понять во всех деталях механизм фотосинтеза, с тем чтобы максимально интенсифицировать его в растениях и по возможности воспроизвести в искусственных условиях. Рис. 5 Рассмотрим несколько подробнее реакции энергетического обмена. Независимо от исходного источника энергии все организмы - как аутотрофы, так и гетеротрофы - сначала переводят энергию в удобное для дальнейшего использования состояние. Это - так называемые макроэргические (богатые энергией) связи в молекулах аденозинтрифосфорной кислоты - АТФ (рис. 5). Образуются молекулы АТФ из аденозин ди фосфорной (АДФ) или аденозин моно фосфорной (АМФ) кислоты и свободных молекул фосфорной кислоты, но при непременном поглощении внешней энергии - солнечной или химической (эндотермическая реакция). Количество энергии, запасенное в макроэргической связи, на порядок больше, чем в обычных связях, например, внутри молекулы глюкозы, поэтому в составе АТФ энергию удобно хранить и транспортировать в пределах клетки. В местах потребления этой энергии АТФ распадается на АДФ и фосфат (при крайней необходимости даже на АМФ и два фосфата), а освобожденная энергия расходуется на ту или иную работу - синтез глюкозы в хлоропластах растительных клеток, синтез белков и других макромолекул, транспорт веществ в клетку и из клетки, движение и др. (см. рис. 5 и 6). АДФ (АМФ) и фосфат могут снова соединиться, захватив очередную порцию внешней энергии, а потом разрушиться и отдать энергию в работу. Циклические преобразования АТФ многократно повторяются. Таким образом, АТФ выступает в качестве универсального переносчика энергии внутри клетки, своеобразной разменной монетой в энергетических платежах за внутриклеточные процессы. Рис. 6 После того, как нам стала ясна роль АТФ и ее цикл, вся проблема клеточной энергетики сводится к пониманию первичных источников энергии и механизмов ее перевода в АТФ. В общем виде ситуация такова: у фотосинтетических аутотрофных организмов синтез АТФ из АДФ и фосфата генерируется солнечной энергией, у гетеротрофов - энергией от окисления пищевых продуктов (см. рис. 5). Таким образом, растениям для синтеза АТФ нужен свет, животным и человеку нужна органическая пища. Свет является первичным источником энергии, он используется в реакциях фотосинтеза у растений. По конечной сути реакция фотосинтеза довольно проста: 6СО 2 + 6H 2 O + энергия света = С 6 Н 12 О 6 + 6О 2 (рис. 6): с помощью энергии света из углекислого газа и воды синтезируется 6-углеродное органическое вещество - глюкоза (моносахарид), и в качестве «лишнего» продукта образуется кислород, который уходит в атмосферу. На самом деле реакция более сложная, она состоит из двух стадий: световой и темновой. Сначала на свету с помощью особого Mg-содержащего белка хлорофилла вода расщепляется на кислород и водород, а энергия водорода передается на синтез АТФ. Только потом, в темновой стадии, водород соединяется с углекислым газом и образуется глюкоза. При этом часть АТФ расщепляется, отдавая энергию глюкозе. Глюкоза вместе с минеральными веществами, поступающими в растение из почвы (азот, сера, фосфор, железо, магний, кальций, калий, натрий и др.), становится основой для более сложных синтезов - образуются полисахариды, липиды, белки, нуклеиновые кислоты, из которых строятся рабочие структуры клеток. Но и эти синтезы, как и синтез глюкозы, требуют энергетических затрат. Прямое использование света здесь невозможно (эволюция не создала таких энергетических переходов), поэтому некоторая часть глюкозы тратится как энергетический субстрат, то есть глюкоза становится вторичным источником энергии. Глюкоза расщепляется и отдает энергию - сначала на синтез АТФ, а после расщепления АТФ - на биосинтезы макромолекул (рис. 6). Значительная часть АТФ, как уже сказано выше, расходуется на другую работу - транспорт веществ, движение клетки и др. Наиболее эффективно глюкоза расщепляется с участием кислорода: C 6 H 12 O 6 + 6O 2 = 6CO 2 + 6H 2 O + энергия. По химической сути это - полное окисление (горение!) глюкозы. В живой клетке это «горение» происходит замедленно, поэтапно, так что энергия выделяется малыми порциями, и большая ее часть (около 55 %) используется на синтез АТФ, остальная рассеивается в виде тепла. Полное окисление одной молекулы глюкозы обеспечивает синтез 38 молекул АТФ. Поскольку кислород для окисления мы вдыхаем с атмосферным воздухом, то и на химическом уровне окисление глюкозы кислородом называют дыханием. На рис. 6 все описанные процессы схематично показаны для аутотрофной растительной клетки. Ее главная черта - способность к фотосинтезу, который обеспечивает первый этап построения органического вещества, в форме глюкозы. Но и дыхание в полной мере присуще растениям, так как именно этот процесс извлекает энергию из глюкозы (а также из жиров и лишних белков), переводит ее временно в АТФ и далее в сложные макромолекулы. Эта же схема, но с изъятием реакции фотосинтеза, соответствует и гетеротрофному метаболизму животных клеток. В этом случае глюкоза (а также другие углеводы, жиры, трофические белки и др.) поступают в клетку извне в готовом виде. Часть этих материалов идет на дыхание (в топку, для извлечения энергии через синтез АТФ), а часть - после некоторой переделки - на синтез новых макромолекул как строительный материал. Таким образом, пища у гетеротрофов (то есть и у нас с вами) имеет двойное назначение - энергетическое и пластическое (строительное). На рис. 6 следует обратить внимание на единство процессов энергетического и пластического (строительного) метаболизма клетки. Энергия поглощается из внешней среды, преобразуется в АТФ прежде всего для осуществления строительных процессов, для построения живой материи. Или обратно: построение живой материи, то есть синтез макромолекул из простых неорганических веществ, возможен только с поглощением внешней энергии. Точки пересечения стрелок энергетического и пластического обмена означают места сопряжения энергетического и пластического метаболизма. В живой клетке таких мест очень много. Сопряжение светового потока и синтеза глюкозы (реакция фотосинтеза) происходит в хлоропластах - специальных органоидах растительных клеток, сопряжение дыхания (окисления глюкозы) и синтеза АТФ - в митохондриях, сопряжение распада АТФ и синтеза клеточных белков - в рибосомах и т. д. (см. сегменты 7 и 8 - о строении клетки, а также рис. 3). С точки зрения обсуждаемой проблемы - материальной сущности жизни - все рассмотренные процессы обмена веществ и энергии в клетке представляют простые физико-химические реакции. Мы не углублялись в механизмы преобразования энергии в хлоропластах и митохондриях, но если бы сделали это, то убедились бы в их изначально физической сущности. Основные события здесь связаны с распадом атомов водорода на элементарные заряженные частицы - протоны (Н+) и электроны (е-) и их индуцированным переносом по разные стороны мембраны внутри хлоропластов и митохондрий. В этих органоидах, как в электрических батарейках, создается разность электрических потенциалов порядка 0,2 вольта, которая при необходимости реализуется в электрический (протонный) ток, а этот ток, в свою очередь, вращает и активирует ферменты синтеза АТФ. Аналогичные физико-химические преобразования мы увидим и в других клеточных структурах.
|
||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 344; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.60.19 (0.007 с.) |