Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Одноканальная СМО с отказами.Содержание книги
Поиск на нашем сайте
Дано: система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью . Поток обслуживаний имеет интенсивность . Заявка, заставшая систему занятой, сразу же покидает ее. Найти: абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t, получит отказ. Система при любом t > 0 может находиться в двух состояниях: S 0 – канал свободен; S 1 – канал занят. Переход из S 0 в S 1 связан с появлением заявки и немедленным началом ее обслуживания. Переход из S 1 в S 0 осуществляется, как только очередное обслуживание завершится (рис.9). Рис.9. Граф состояний одноканальной СМО с отказами Выходные характеристики (характеристики эффективности) этой и других СМО будут даваться без выводов и доказательств. Абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени): где – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками - ); – интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания ). Относительная пропускная способность (средняя доля заявок, обслуживаемых системой): Вероятность отказа (вероятность того, что заявка покинет СМО необслуженной): Очевидны следующие соотношения: и . N – канальная СМО с отказами (задача Эрланга). Это одна из первых задач теории массового обслуживания. Она возникла из практических нужд телефонии и была решена в начале 20 века датским математиком Эрлангом. Дано: в системе имеется n – каналов, на которые поступает поток заявок с интенсивностью . Поток обслуживаний имеет интенсивность . Заявка, заставшая систему занятой, сразу же покидает ее. Найти: абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времени t, получит отказ; среднее число заявок, обслуживаемых одновременно (или, другими словам, среднее число занятых каналов). Решение. Состояние системы S (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов): · S 0 – в СМО нет ни одной заявки; · S 1 – в СМО находится одна заявка (один канал занят, остальные свободны); · S 2 – в СМО находится две заявки (два канала заняты, остальные свободны); ·... · S n – в СМО находится n – заявок (все n – каналов заняты). Граф состояний СМО представлен на рис. 10. Рис.10. Граф состояний для n – канальной СМО с отказами Почему граф состояний размечен именно так? Из состояния S 0 в состояние S 1 систему переводит поток заявок с интенсивностью (как только приходит заявка, система переходит из S 0 в S 1). Если система находилась в состоянии S 1 и пришла еще одна заявка, то она переходит в состояние S 2 и т.д. Почему такие интенсивности у нижних стрелок (дуг графа)? Пусть система находится в состоянии S 1 (работает один канал). Он производит обслуживаний в единицу времени. Поэтому дуга перехода из состояния S 1 в состояние S 0 нагружена интенсивностью . Пусть теперь система находится в состоянии S 2 (работают два канала). Чтобы ей перейти в S 1, нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равна и т.д. Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом. Абсолютная пропускная способность: где n – количество каналов СМО; – вероятность нахождения СМО в начальном состоянии, когда все каналы свободны (финальная вероятность нахождения СМО в состоянии S 0); Для того, чтобы написать формулу для определения , рассмотрим рис.11.
Рис.11. Граф состояний для схемы «гибели и размножения» Граф, представленный на этом рисунке, называют еще графом состояний для схемы «гибели и размножения». Напишем сначала для общую формулу (без доказательства): Кстати, остальные финальные вероятности состояний СМО запишутся следующим образом. Вероятность того, что СМО находится в состоянии S 1, когда один канал занят: Вероятность того, что СМО находится в состоянии S 2, т.е. когда два канала заняты: Вероятность того, что СМО находится в состоянии S n, т.е. когда все каналы заняты. Теперь для n – канальной СМО с отказами При этом Относительная пропускная способность: Напомним, что это средняя доля заявок, обслуживаемых системой. При этом ; . Вероятность отказа: Напомним, что это вероятность того, что заявка покинет СМО необслуженной. Очевидно, что . Среднее число занятых каналов (среднее число заявок, обслуживаемых одновременно): При этом .
|
||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 359; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.248.17 (0.006 с.) |