Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Энергия эмв. Вектор умова. Вектор умова-пойтинга.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Импульс, массаэлектромагнитного пля (с выводом). Существование давления ЭМВ приводит к выводу о том, что электромагнитному полю присущ механический импульс. Выражая импульс как (поле в вакууме распространяется со скоростью света с), получим отсюда
Это соотношение между массой и энергией ЭМП является универсальным законом природы, справедливым для любых тел независимо от их внутреннего строения. Импульс электромагнитного поля, связанного с движущейся частицей, – электромагнитный импульс – оказался пропорциональным скорости частицы υ, что имеет место и в выражении для обычного импульса m υ, где m – инертная масса заряженной частицы. Поэтому коэффициент пропорциональности в полученном выражении для импульса называют электромагнитной массой:
где е – заряд движущейся частицы, а – ее радиус. И даже если тело не обладает никакой иной массой, оказывается, что между импульсом и скоростью заряженной частицы существует соотношение:
Это соотношение как бы раскрывает происхождение массы – это электродинамический эффект. Движение заряженной частицы сопровождается возникновением магнитного поля. Магнитное поле сообщает телу дополнительную инертность – при ускорении затрачивается работа на создание магнитного поля, при торможении – работа против затормаживающих сил индукционного происхождения. По отношению к движущемуся заряду электромагнитное поле является средой, неотделимой от заряда. В общем случае можно записать, что полный импульс равен сумме механического и электромагнитного импульсов; возможно, что другие поля вносят и иные вклады в полную массу частицы, но, определенно, в полной массе есть электромагнитная часть: , . Если учесть релятивистские эффекты сокращения длины и преобразования электрических и магнитных полей, то для электромагнитного импульса получается также релятивистски инвариантная формула:
Таким же образом изменяется релятивистский механический импульс. Излучение диполя. Диаграмма направленности излучения диполя. Интенсивность излучения. Чем вызвано ограничение энергии электронов при ускорении в бетатроне. Почему у БАКа малая кривизна траектории движения частиц. Любой заряд, движущийся ускоренно, излучает электромагнитную волну. Мощность излучения можно найти опять-таки из уравнений Максвелла; она пропорциональна квадрату заряда и квадрату его ускорения: . Рассмотрим электрический диполь с переменным дипольным моментом: – плечо диполя, изменяющееся гармонически с круговой частотой : Амплитуда дипольного момента: Такие колебания диполя могут возникнуть, например, при воздействии на молекулу (атом) вещества переменного электрического поля (рис.17.28): электронное облако перемещается относительно ядра вдоль оси OZ. Второй пример: колебания заряда на излучающей антенне (рис.17.29).
Средняя мощность излучения: пропорциональна квадрату амплитуды дипольного момента и четвёртой степени частоты. Кроме того, мощность излучения неодинакова по всем направлениям. На расстояниях, много больших длины волны излучения , максимальные значения напряжённостей полей – электрического и магнитного – пропорциональны синусу угла между осью диполя и радиус-вектором данной точки и обратно пропорциональны расстоянию до диполя. Последнее свойство объясняется законом сохранения энергии для сферической волны: чем дальше от излучателя, тем в большем шаровом слое распределяется энергия волны. Интенсивность волны:
Можно привести ещё диаграмму направленности излучения точечного диполя (рис.17.31). Она даёт представление об интенсивности волны I, излучённой в данном направлении под углом к оси колебаний диполя. В направлении колебаний диполя излучения нет, а в плоскости, перпендикулярной этому направлению, излучение максимально. Вектор напряжённости электрического поля колеблется в плоскости картинки, вектор – перпендикулярно ей.
|
|||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 518; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.151.127 (0.006 с.) |