Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Противоположность логическаяСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
– вид отношения между противоположными понятиями или суждениями в традиционной логике. В отношении противоположности находятся такие несовместимые понятия, объемы которых включаются в объем более широкого, родового понятия, но не исчерпывают его полностью, напр. «белый — черный», «сладкий — горький», «высокий - низкий» и т. п. Если последнюю пару понятий отнести к людям, то класс «люди» [291] можно разбить на три части: «высокие» — «среднего роста» — «низкие». Противоположные понятия «высокий» — «низкий» займут наиболее удаленные друг от друга части объема родового понятия, но не покроют его целиком. В отношении противоположности находятся общеутвердительные и общеотрицательные суждения, говорящие об одном и том же классе предметов и об одном и том же свойстве, например: «Всякий человек добр» и «Ни один человек не добр». Такие суждения вместе не могут быть истинными, однако они оба могут оказаться ложными (как это имеет место в приведенном примере). ПРОТИВОПОСТАВЛЕНИЕ ПРЕДИКАТУ - вид непосредственного умозаключения, в котором субъектом вывода является понятие, противоречащее предикату посылки, предикатом является субъект посылки, а связка изменяется на противоположную символически:
П. п. представляет собой соединение превращения с обращением, поэтому при его выполнении следует сначала произвести превращение посылки, а затем обратить получившееся суждение: превращаем «S есть Р», получаем «S не есть не - Р»,затем обращаем последнее суждение и приходим к выводу «не - Р не есть S».Затруднения здесь носят чисто грамматический характер. Чтобы избежать их, следует формулировать связку в явном виде и фиксировать отрицания. Из общеутвердительного суждения следует общеотрицательный вывод; из общеотрицательного суждения следует частноутвердительный вывод; из частноотрицательного суждения следует частноутвердительный вывод; из частноутвердительного суждения нельзя получить вывод путем П. п. ПРОТИВОРЕЧИЕ - два высказывания, из которых одно является отрицанием другого. Напр.: «Латунь - химический элемент» и «Латунь не является химическим элементом», «2 - простое число» и «2 не является простым числом». В одном из противоречащих высказываний что-то утверждается, в другом это же самое отрицается, причем утверждение и отрицание касаются одного и того же объекта, взятого в одно и то же время и рассматриваемого в одном и том же отношении. П. является одним из центральных понятий логики. Поскольку слово «П.» многозначно, пару отрицающих друг друга высказываний называют иногда «логическим П.» или абсурдом. П. недопустимо в строгом рассуждении, когда оно смешивает истину с ложью. Но у П. в обычном языке много разных задач. Оно [292] может выступать в качестве основы сюжета, быть средством достижения особой художественной выразительности, комического эффекта и т. д. Реальное мышление — и тем более художественное мышление — не сводится к одной логичности. В нем важны ясность и неясность, доказательность и зыбкость, точное определение и чувственный образ и т. д., может оказаться нужным даже П., если оно стоит на своем месте. [293]
Р РАВЕНСТВО — отношение между знаковыми выражениями, обозначающими один и тот же объект, когда все, что можно высказать на языке соответствующей теории об одном из них, можно высказать и о другом, и наоборот, и при этом получать истинные высказывания. Обозначаемые объекты могут быть построены различным способом, напр., один объект может быть представлен как «3•5», а другой как «20-5», но между ними может быть поставлен знак Р. Отношение Р позволяет заменять одни и те же объекты, построенные различным образом, друг на друга в различных контекстах (правило подстановочности). Выражения (формулы), содержащие предикат Р., могут содержать переменные,или параметры. Если такая формула является истинной при всех значениях переменных (параметров), то отношение Р называют тождеством. Если же она является истинной лишь при некоторых значениях, то ее называют уравнением. Отношение Р обладает свойствами симметричности, транзитивности и рефлексивности. РАВНОЗНАЧНОСТЬ (равносильность, эквивалентность) - отношение между высказываниями или формулами, когда они принимают одни и те же истинностные значения. Напр., при любых значениях элементарных высказываний формулы (A v B)и (B v A),(A v (A & В))и A принимают одни и те же значения, т. е. если одна из них истинна, то и другая истинна, если одна из них ложна, то и другая также ложна. Если два высказывания A и В равнозначны, то формулы А -> В и B -> А будут тождественно истинными. РАВНООБЪЕМНОСТЬ - отношение между понятиями, объемы которых совпадают. Напр., понятия «луна» и «естественный спутник Земли» совпадают по своему объему, в который входит только один
[294] предмет; понятия «человек» и «разумное существо, владеющее членораздельной речью» равны по своему объему, т. к. обозначают один и тот же класс — людей. РАЗДЕЛИТЕЛЬНОЕ СУЖДЕНИЕ - дизъюнктивное (от лат. disjunctio — разобщаю) сложное суждение, образованное из двух или большего числа суждений с помощью логической связки «или». Общая форма Р. с. имеет вид А 1v A 2 v,..., v An, где Аn — суждение (член дизъюнкции, альтернатива), a v — знак дизъюнкции. Существуют два вида Р. с.: строго разделительные и нестрого разделительные. В строго разделительных суждениях связка «или», «либо» употребляется в строго разделительном смысле (см.: Дизъюнкция),т. е. когда члены дизъюнкции (альтернативы) в двучленном суждении A 1 v A 2 несовместимы (одно из них является истинным, а другое — ложным). Таково суждение: «Этот человек является виновным (A 1) либо этот человек не является виновным (А 2)».Естественно, что данный человек не может быть одновременно виновным и невиновным, имеет место лишь одна из альтернатив. В нестрого разделительных суждениях (см.: Дизъюнкция)альтернативы не являются несовместимыми. Таково суждение «Этот ученик является способным или он является прилежным». В этом суждении не исключается, что ученик может быть одновременно способным и прилежным. Р. с. в обычном языке формулируются чаще всего в сокращенной форме и имеют, напр., вид: «S есть Р 1или P 2 или «Р 1или p 2 принадлежит S». Так, суждение «Данный треугольник прямоугольный или непрямоугольный» означает Р. с. «Данный треугольник прямоугольный или данный треугольник непрямоугольный» Связка «либо» вместо связки «или» используется обычно в строго разделительных суждениях. РАЗДЕЛИТЕЛЬНО-КАТЕГОРИЧЕСКОЕ УМОЗАКЛЮЧЕНИЕ - умозаключение, в котором одна из посылок — разделительное суждение,а другая — категорическое. Р.-к. у. имеет два модуса: 1) модус утверждающе-отрицающий; 2) модус отрицающе-утверждающий. Простейшая форма модуса (1) имеет вид: S есть Р 1или p 2(первая посылка); S есть Р 1(вторая посылка); S не есть p 2(заключение). Такую форму имеет, напр., следующее умозаключение: «Жидкие коллоидные системы бывают эмульсиями либо золями. Данная жидкая коллоидная система является эмульсией. Данная жидкая коллоидная система не является золем». В таком умозаключении для обеспечения его правильности в разделительной посылке союз «или» («либо») должен употребляться в строго разделительном смысле (см.: Дизъюнкция). [295] Простейшая форма модуса (2) имеет вид: S есть Р 1или p 2, S не есть р 1; следовательно, S есть Р 2.Пример: Организмы бывают одноклеточными или многоклеточными. Данный организм не является одноклеточным. Данный организм является многоклеточным. В таком умозаключении для обеспечения его правильности в первой посылке должны быть перечислены все члены дизъюнкции (альтернативы). РАЗДЕЛИТЕЛЬНО-УСЛОВНОЕ УМОЗАКЛЮЧЕНИЕ, см.: Дилемма. РАЗРЕШАЮЩАЯ ПРОЦЕДУРА,см.: Разрешения проблема. РАЗРЕШЕНИЯ ПРОБЛЕМА, или: Разрешимости проблема, — проблема нахождения для данной дедуктивной теории общего метода, позволяющего решать, может ли отдельное утверждение, сформулированное в терминах теории, быть доказано в ней или нет. Этот общий метод, являющийся эффективной процедурой (алгоритмом), называется процедурой разрешения или разрешающей процедурой, а теория, для которой такая процедура существует, — разрешимой теорией. Р. п. решается в классической логике высказываний с помощью таблиц истинности. Разрешающий алгоритм существует и для логики одноместных предикатов, для силлогизма категорического и других простых дедуктивных теорий. Но уже для логики предикатов общего решения Р. п. не существует. В математике также невозможно установить общий метод, который дал бы возможность провести различие между утверждениями, которые могут быть доказаны в ней, и теми, которые в ней недоказуемы. Невозможность найти для теории общий разрешающий метод не исключает поиска процедуры разрешения для отдельных классов ее утверждений. РАЗРЕШИМАЯ ТЕОРИЯ — теория, для которой существует эффективная процедура (алгоритм), позволяющая о каждом утверждении, сформулированном в терминах этой теории, решить, выводимо оно в теории или нет (см.: Разрешения проблема). Р. т. являются, напр., элементарная алгебра Буля,теория сложения целых чисел и некоторые иные простые математические теории. Неразрешима арифметика целых чисел (т. е. теория четырех главных арифметических действий над целыми числами) и каждая дедуктивная теория, содержащая арифметику. РАЦИОНАЛЬНОСТЬ (от лат. ratio - разум) - относящееся к разуму, обоснованность разумом, доступное разумному пониманию, в
[296] противоположность иррациональности как чему-то неразумному, недоступному разумному пониманию. В методологии научного познания Р. понимается двояко. Чаще всего Р. истолковывается как соответствие законам разума — законам логики, методологическим нормам и правилам. То, что соответствует логико-методологическим стандартам, — Р., то, что нарушает эти стандарты, — нерационально или даже иррационально. Иногда под Р. понимают целесообразность. То, что способствует достижению цели, — Р., то, что этому препятствует, — нерациональность. До недавних пор считалось, что образцом Р. деятельности является наука и деятельность ученого. Все остальные сферы человеческой деятельности Р. лишь в той мере, в какой они опираются на научные знания и методы. В настоящее время признано, что каждая область деятельности имеет свои стандарты Р., которые далеко не всегда совпадают с научными, поэтому можно говорить о Р. в искусстве, в политике, в управлении и т. д. Поэзия столь же Р., как и наука, но в ней иные стандарты Р. РЕКУРСИВНОЕ ОПРЕДЕЛЕНИЕ (от лат. recurso -возвращаюсь) — метод определения арифметической функции φ (у)или предиката Р (у)через область значений этой функции или предиката. Примером Р. о. может быть определение функции сложения: а + 0 = а,(1) а + b'= (а+b) ' (2) В равенстве (1) говорится, что некоторое фиксированное число а (см.: Параметр)при прибавлении к нему нуля дает число а. В равенстве (2) говорится., что если к некоторому фиксированному числу а добавить число, следующее за некоторым фиксированным числом b (т. е. b',или число b +1), то эта сумма будет равна числу, следующему за суммой чисел а+b. Напр., если к числу 2 добавить число, следующее за числом 3, т. е. число 4, то этот же результат можно получить, сложив 2 и 3 и перейдя от полученной суммы к следующему за ней числу. Значение левой и правой частей равенства в данном случае равно 6. Такого рода функции позволяют вычислять значение суммы самых различных чисел. При этом осуществляется переход от некоторого числа п к следующему за ним (к п',или п +1), т. е. строится натуральный ряд чисел начиная с нуля. Допустим, нам требуется сложить 5 и 2. Тогда число 2 представим как следующее за 1, т. е. как 1'. Итак, имеем:
[297] Теперь будем возвращаться от равенства 5+0=5 (в) к равенству (б), а затем к равенству (а). Раз 5+0=5, то (5+0)'=6 (см. равенство (б)). Раз 5+1 равно 6, то (5+1)'=7 (см. равенство (а)). Итак, 5+2=7. В основе вычислимости арифметических функций, определяемых рекурсивно, лежит класс некоторых других функций, считающихся заданными с самого начала, которые называются примитивно-рекурсивными. РЕЛЕВАНТНАЯ ИМПЛИКАЦИЯ, см.: Релевантная логика. РЕЛЕВАНТНАЯ ЛОГИКА - одна из наиболее известных неклассических теорий логического следования. В названии «Р. л.» отражается стремление выделить и систематизировать только уместные (релевантные) принципы логики, исключив, в частности, парадоксы импликации,свойственные импликации материальной классической логики, строгой импликации и др. импликациям. В Р. л. формальным аналогом условного высказывания является релевантная импликация, учитывающая содержательную связь, существующую между основанием (антецедентом)и следствием (консеквентом)такого высказывания. Выражение «Утверждение A релевантно имплицирует утверждение В»означает, что В содержится в A и информация, представляемая В,является частью информации A. В частности, A не может релевантно имплицировать В,если в В не входит хотя бы одно из тех утверждений, из которых слагается А. В Р. л. не имеет места принцип, позволяющий из противоречия выводить какое угодно высказывание. Эта логика является, таким образом, одной из паранепротиворечивых логик,не отождествляющих противоречивость опирающихся на них теорий с их тривиальностью, т. е. с доказуемостью в них любого утверждения. В Р. л. логически истинное высказывание невыводимо из произвольно взятого высказывания. РЕФЕРЕНТ (от лат. refero — называть, обозначать) — объект, обозначаемый некоторым именем,то же, что и денотат. Напр., Р. выражения «первый космонавт» будет Юрий Гагарин (см.: Имя, Денотат). РЕФЕРЕНЦИЯ — отношение между обозначаемым и обозначающим, между предметом и его именем. Отношение Р. изучается теорией референции — разделом логической семантики (см.: Имя, Денотат). [298] C СВОЙСТВО — характеристика, присущая вещам и явлениям, позволяющая отличать или отождествлять их. Каждому предмету присуще бесчисленное количество свойств, которые делятся на существенные и несущественные, необходимые и случайные, общие и специфические и т. д. В логике С. называют то, что обозначается одноместным предикатом,напр.: «... есть человек», «... есть зеленый» и т. п. При постановке на пустое место имени к.-л. объекта мы получаем истинное или ложное высказывание: «Сократ есть человек», «Снег зеленый». СВЯЗКА — в традиционной логике элемент простого суждения, соединяющий субъект и предикат. В повседневном языке С. обычно выражается словами «есть», «суть», «является» и т. п., напр.: «Узбеки являются жителями Средней Азии». В обыденной речи С. часто опускается и приведенное выше предложение обычно выглядит так: «Узбеки живут в Средней Азии». Однако даже если С. не выражена каким-то специальным словом, она обязательно присутствуют в суждении. Напр., два понятия «город» и «населенный пункт» образуют суждение только после того, как их соединит С. «Город есть неселенный пункт». Поэтому схематическое представление простого суждения включает в себя три элемента — субъект, предикат и связку: «5 есть Р».С. может быть утвердительной или отрицательной («есть» или «не есть»). Именно этим определяется качество простого суждения. В символической логике пропозициональными связками называют логические союзы (операторы), с помощью которых из простых высказываний получают сложные высказывания. К ним обычно относят отрицание, конъюнкцию, дизъюнкцию, импликацию и т. п. Условия истинности сложных высказываний, содержащих пропо- [299] зициональные связки, формулируются посредством таблиц истинности. (См.: Суждение.) СЕМАНТИКА ЛОГИЧЕСКАЯ — раздел логики (металогики),исследующий отношение языковых выражений к обозначаемым объектам и выражаемому содержанию. Проблемы семантики обсуждались еще в античности, однако в качестве самостоятельной дисциплины она стала оформляться на рубеже XIX—XX вв. благодаря работам Ч. Пирса, Г. Фреге, Б. Рассела. Значительный вклад в разработку проблем С. л. внесли А. Тарский, Р. Карнап, У. Куайн, Дж. Кемени, К. И. Льюис, С. Крипке и др. В течение длительного времени С. л. ориентировалась преимущественно на анализ формализованных языков, однако в последние 20 лет все больше исследований посвящается естественному языку. В С. л. традиционно выделяют две области — теорию референции (обозначения) и теорию смысла. Теория референции исследует отношение языковых выражений к обозначаемым объектам, ее основными категориями являются: «имя», «обозначение», «выполнимость», «истинность», «интерпретация», «модель» и т. п. Теория референции служит основой теории доказательств в логике. Теория смысла пытается ответить на вопрос о том, что такое смысл языковых выражений, когда выражения являются тождественными по смыслу, как соотносятся смысл и денотат и т. п. Значительную роль в С.л. играет обсуждение семантических парадоксов,решение которых является важным критерием приемлемости любой семантической теории. СЕМАНТИЧЕСКАЯ КАТЕГОРИЯ - класс языковых выражений, взаимная замена которых в предложении сохраняет его грамматический статус, т. е. предложение остается предложением. Если, напр., в предложении «Волга впадает в Каспийское море» слово «Волга» мы заменим словом «Нева», то получим хотя и ложное, но все-таки предложение. Это означает, что слова «Волга» и «Нева» принадлежат одной С.к. Но если вместо слова «Волга» мы поставим слово «меньше», то у нас окажется бессмысленный набор слов, следовательно, слова «Волга» и «меньше» принадлежат разным С. к. Наиболее известную систему С. к. разработал польский логик К. Айдукевич (1890—1963). Исходными категориями его системы являются категории собственных имен (n) и высказываний (s).Предполагается, что каждое правильно построенное выражение языка может быть расчленено на функтор и его аргументы. Категория функтора определяется как дробь, в знаменателе которой стоят категории аргументов, а в числителе - категория выражения, образующегося в результате сочленения функтора с аргументами. [300] Напр., к какой С. к. принадлежит одноместный предикат «...бел»? Его единственным аргументом является некоторое имя, категория которого помещается в знаменателе дроби; в результате соединения предиката с именем получается предложение, категория которого
помещается в числителе дроби, получается . С. к. двухместного предиката, скажем, «больше», будет выглядеть так: . Логические связки можно рассматривать как функторы, применяемые к предложениям, причем в результате опять получается предложение. Т. о., категория бинарной связки, скажем, «или», «если, то» и т. п., будет выглядеть так: . Теория С. к. служит основой для классификации формализованных языков и определения важных семантических понятий, например понятия истины. СЕМАНТИЧЕСКИЕ ПАРАДОКСЫ, см.: Антиномия.
|
||||||||||
Последнее изменение этой страницы: 2016-06-23; просмотров: 1347; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.107.11 (0.011 с.) |