Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Формулировка новой парадигмы.Содержание книги
Поиск на нашем сайте
Мне представляется, что в состав парадигмы должны входить объект познания и наиболее общие свойства этого объекта. Эти объект и свойства задаются априори, до опыта. Они принимаются на веру и поэтому фактически служат исходным постулатом теории. Чтобы парадигма могла удовлетворять требованиям, предъявляемым к монопарадигме, объект познания должен быть всеохватывающим, а приписываемые ему свойства должны представлять собой категории широкого философского плана, ибо на современном этапе развития науки, когда объектом изучения становятся самые глубинные свойства мироздания, уже недопустимо обходиться без философских представлений. Первому требованию вполне удовлетворяет понятие Вселенной, а второму - такие философские категории, как объективизм, детерминизм, необходимость [24, с.7]. В результате предлагаемая парадигма науки выглядит следующим образом.
3.Вселенная состоит из вещества и его поведения, в том числе вещества и
Нетрудно заметить, что все пункты парадигмы органически между собой связаны. Вселенная существует объективно, это свойство Вселенной отражено в философской концепции объективизма, все другие толкования этого термина я оставлю в стороне. Таким образом, объективизмом я утверждаю факт существования объективной реальности, не зависящей от свойств субъекта: наблюдателя, измерительного прибора и т.п. Вселенная состоит из вещества и его поведения. Между веществом и его поведением объективно существует однозначная закономерная (детерминистская) связь. Это свойство Вселенной заложено в философскую концепцию детерминизма. Характер имеющейся связи определяется пунктом 4 парадигмы. При формулировке парадигмы я умышленно обхожу вопрос о том, как связаны вещество и его поведение с материей и движением, чтобы не вовлекать в рассмотрение большой круг философских проблем, которые для инженерных расчетов не существенны. Инженеру привычно иметь дело с веществом, из которого он строит свои машины, и с поведением этого вещества, причем поведение понимается мною в самом широком смысле этого термина. При такой постановке вопроса вполне очевидным становится и пункт 4 парадигмы. Не исключается также возможность отождествлять вещество с материей (по-латински материя - вещество), а поведение - с движением, понимаемым в широком смысле, если это встретит благосклонное отношение со стороны философов... Поскольку Вселенная состоит только из вещества и его поведения, постольку за взаимодействие объектов природы также должны быть ответственны свои особые вещество и поведение взаимодействия. Каждому данному основному веществу, испытывающему взаимодействие, соответствует определенное сопряженное с ним вещество взаимодействия. Расчленение вещества и поведения на основные и взаимодействия - это существенный шаг в развитии представлений ОТ. Придание явлению взаимодействия смысла вещества взаимодействия и его поведения имеет не менее важное принципиальное значение, чем расчленение Вселенной на вещество и поведение. Такое понимание позволяет сделать решающий шаг в направлении от независимого рассмотрения явлений природы к рассмотрению, при котором все явления оказываются между собою связанными и взаимно обусловленными, обязанными непрерывно изменяться и развиваться (эволюционировать). Но всеобщая связь может быть обеспечена единственным способом, если наделить явление взаимодействия свойством предельной универсальности. Только благодаря такой универсальности каждое явление в отдельности и вся их совокупность в целом способны и вынуждены влиять друг на друга и самопроизвольно (спонтанно) развиваться. Поэтому признание наличия в природе универсального взаимодействия должно быть обязательным требованием, предъявляемым к теории. Помимо универсального существуют еще и специфические взаимодействия. Например, в настоящее время под этими последними принято понимать сильное, слабое, электромагнитное и гравитационное взаимодействия. Как видим, согласно ОТ, необходимость развития заключена в самой сущности вещей - в веществе и его поведении. Таким образом, взаимодействие, как известное специфическое, так и вводимое мною универсальное, связывающее между собой все разнородные вещества Вселенной, приводит к объективной причинной обусловленности и обязательности изменения и развития всевозможных явлений природы. При этом обязаны изменяться и развиваться не только основные вещество и поведение, но и сопряженные с ними вещество и поведение взаимодействия. Это свойство Вселенной выражает философская концепция необходимости. Таково содержание предлагаемой мною парадигмы, одновременно являющейся исходным постулатом ОТ. Как и всякий постулат любой теории, постулат-парадигма ОТ не доказывается, а принимается на веру; в частности, он не может быть обоснован средствами самой теории. Нетрудно видеть, что обсуждаемая парадигма отличается максимальной универсальностью, это делает ее справедливой для любой конкретной дисциплины, следовательно, она вполне может рассматриваться в качестве монопарадигмы. Любая теория способна и вынуждена развиваться в рамках своей парадигмы. При этом парадигма есть исходный фундамент всякой данной теории, наиболее незыблемая ее часть; с этим прокрустовым ложем постоянно сверяются все последующие рассуждения. Благодаря этому парадигма зримо или незримо, явно или неявно обязательно присутствует на всех ярусах теории. Иными словами, различные конкретные детали любой данной теории всегда в той или иной форме и степени отражают влияние парадигмы. Вместе с тем практическая реализация парадигмы допускает известные вариации и изменения. Сильнее всего способны деформироваться и изменяться отдельные частные детали аппарата конкретной теории, что станет ясно из последующего изложения [ТРП, стр.20-22].
Методы дедукции и индукции.
Предельная универсальность принятой монопарадигмы объясняется тем, что последняя содержит весьма общие философские концепции - объективизм, детерминизм, необходимость, которые фактически реализуются с помощью не менее объемлющих физических концепций, таких, как Вселенная, вещество его поведение, взаимодействие. Эти физические концепции играют в ОТ роль коммуникативного уровня, связывающего философию с собственно научным уровнем методологии. Последовательная расшифровка и детализация физических концепций позволяют в конечном итоге опуститься до уровня конкретных свойств изучаемого реального явления. Чтобы представить себе путь, который надо пройти от физических концепций до конкретных свойств, достаточно рассмотреть типичный пример изучения какого-либо явления природы. Изучение обычно начинается с выбора количественных Законов, или принципов, которым подчиняется данное явление. Например, при определении теплопотерь через стенку в качестве количественных принципов используются законы теплопроводности Фурье и теплоотдачи на поверхности тела Ньютона. Затем высказывается предположение (качественная модельная гипотеза) о конкретном способе (схеме) приложения этих законов к изучаемому явлению. Например, объектом приложения может служить бесконечно длинный круглый полый цилиндр определенных размеров - в данном простейшем случае это и есть качественная модельная гипотеза. В ходе рассуждений принятая качественная модель согласовывается с выбранными физическими принципами. В результате получаются количественные соотношения, позволяющие вычислить конкретные свойства интересующего нас явления, в частности найти количество переданного через стенку тепла. Теоретически вычисленные свойства сопоставляются с измеренными свойствами реального явления. По степени расхождения расчетных и опытных данных можно судить о добротности проведенных рассуждений. Такова типичная последовательность перехода от количественных принципов через качественные модельные гипотезы к конкретным свойствам явления. Принципы, в свою очередь, находятся путем соответствующей расшифровки и детализации физических концепций. В совокупности перечисленные звенья рассуждений выстраиваются в стройную цепочку, которая выражает собой не что иное, как метод дедукции, то есть Метод рассуждений от общего к частному, от общих положений к конкретным выводам. Таким образом, впервые удается развить теоретический метод дедукции в его наиболее общей форме, ибо рассуждения простираются от весьма общих философских концепций и до выраженных числом свойств конкретного явления. При этом парадигма по необходимости дополняется следующими звеньями цепочки: количественные принципы, качественные гипотезы, конкретные свойства явления. При индуктивном способе рассуждений вначале накапливаются конкретные факты (данные), относящиеся к свойствам изучаемого явления. Затем эти данные обобщаются в форме качественного предположения о сущности физического механизма явления, то есть высказывается модельная гипотеза. На основе изучения модели делается обобщающий вывод о существовании неких количественных физических принципов, управляющих явлением. Справедливость найденных принципов проверяется на множестве других аналогичных явлений. Путем обобщения физических принципов - формулируются соответствующие физические, а затем и философские концепции теории. Таков схематический путь рассуждений, от частного к общему.
1. Вселенная. 4. Вещество первично, его поведение вторично.
Движение по этой цепочке в прямом направлении соответствует общему методу дедукции, в обратном - общему методу индукции. Оба способа рассуждений - дедуктивный и индуктивный - осуществляются на одном или нескольких языках одновременно. Чаще всего в рассуждениях используются словесный, математический, алгоритмический и т.д. языки. Так я расшифровываю общие методы дедукции и индукции. К этому следует добавить лишь некоторые пояснения по поводу содержания пятого и шестого звеньев цепи, от которых в конечном итоге зависит добротность проведенных рассуждений, то есть точность согласования теоретических и опытных данных. Под количественными принципами понимаются законы, которые в наиболее концентрированном и абстрактном виде с количественной стороны определяют самые общие, важные характерные свойства изучаемого явления. Примерами могут служить законы теплопроводности Фурье, всемирного тяготения Ньютона и т.д.; первый количественно характеризует процессы теплопроводности, а второй - процессы гравитационного притяжения тел. Это законы частные, сфера их действия ограничена определенными конкретными явлениями. Но существуют законы и более общие. Наиболее общие, универсальные и достоверные количественные принципы, которые обнаруживаются на первом - начальном - этапе эволюции вещества и его поведения, я буду именовать началами. Примером может служить закон сохранения энергии. Особенность начал заключается в том, что им подчиняются вещество и его и поведение на всех этапах эволюции, включая самые сложные. Начала играют роль абсолютных истин, которые не могут быть опровергнуты в будущем в ходе исторического развития науки, им обязана подчиняться вся природа. Из сказанного должно быть ясно, что при изучении какого-либо конкретного явления и правильном выборе количественных принципов они не могут служить источником ошибок в рассуждениях, особенно если речь идет о началах. Причиной ошибок может быть либо неправильный выбор принципов (например, распространение законов, которым подчиняются сложные формы явлений эволюционного ряда, на более простые формы), в том числе неполнота их списка, либо ошибочность самих принципов, что также случается. Но главным источником Ошибок и погрешностей в рассуждениях, как правило, являются качественные, или модельные, гипотезы. Модельные гипотезы призваны определять физический механизм (структуру, схему) изучаемого явления. В цепи рассуждений они перекидывают мост между количественными принципами и детальными свойствами конкретного явления. Модельные гипотезы характеризуют наши представления сущности физического механизма изучаемого явления, то, есть наше понимание этого явления. В ходе исторического развития науки имеющиеся модельные представления непрерывно изменяются и уточняются, ибо они отражают упомянутый механизм лишь с большим или меньшим приближением, отвечающим данному уровню знаний и никогда не способны, отразить его абсолютно точно. Иными словами, модельные представления всегда суть относительные истины, поэтому для них естественно было принять наименование гипотез. Модельные гипотезы в равной мере необходимы при изучении макромира, мегамира, микромира и т.д. В общем случае модельные гипотезы могут быть самыми разнообразными. Например, выделение из всей совокупности тел природы данного изучаемого тела (системы) уже есть определенная простейшая модельная гипотеза. Одну такую простейшую макромодельную гипотезу мы уже упомянули, когда говорили о передаче теплоты через стенку. Ее можно уточнить, если вместо бесконечно длинного цилиндра рассматривать цилиндр конечной длины, но тогда все рассуждения усложняются, хотя задача и выигрывает в точности. Еще более задача уточняется и усложняется, если учесть взаимное влияние теплового, кинетического, электрического и т.д. явлений, однако при этом приходится обращаться уже и к другим количественным принципам. К более сложным моделям, охватывающим одновременно несколько тел. приходится прибегать, например, при попытках описать устройство Солнечной системы. В качестве иллюстрации таких мегамодельных гипотез можно сослаться на геоцентрическую и гелиоцентрическую теории Птолемея и Коперника соответственно. Модельные гипотезы усложняются многократно при переходе к микромиру. Характерным примером может служить микромодель атома. Первоначально атом рассматривался как мельчайшая неделимая частица. Затем обсуждалась модель Дж. Дж. Томсона, представлявшая собой смесь положительных и отрицательных зарядов ("сливовый пудинг"). На смену сливовому пудингу пришла модель Резерфорда, в которой положительное ядро окружено облаком из отрицательно заряженных электронов. Эта модель трансформировалась в планетарную модель Бора, где вокруг положительного ядра движутся по определенным орбитам электроны. Сейчас обсуждаются более сложные модели, и этой смене моделей в принципе не может быть конца. Модельные гипотезы находятся различными способами. Их можно высказать умозрительно, не опираясь на опытные данные; такой подход характерен для мыслителей древности. Модельные гипотезы могут явиться результатом обобщения мышлением (опосредствования) наблюдений, касающихся свойств данного конкретного явления. Нет сомнений, что этот способ определения модельных гипотез предпочтительнее предыдущего. Наконец, модельные представления могут быть "угаданы" с помощью математических уравнений. Иными словами, при математическом подходе качественной моделью физического явления служит формула. Этот частный способ установления гипотез, именуемых математическими, широко распространен в настоящее время; вспомним, например, угаданные уравнения Гейзенберга, Дирака, Фейнмана, Шредингера, за что перечисленные авторы были удостоены Нобелевских премий. Математическая формула-модель обладает рядом специфических особенностей и недостатков; в частности, любая формула есть носитель определенной математической идеи, сущность которой не обязательно совпадает с сущностью изучаемого физического явления, кроме того, формула-модель не наглядна. В результате возникает проблема интерпретации "угаданного" уравнения, как это было, например, в случае Бора, статистически интерпретировавшего волновую функцию и получившего за это Нобелевскую премию. Приведенные рассуждения наглядно свидетельствуют об ограниченности всякой модельной гипотезы: во-первых, она недолговечна и, во-вторых, качественно характеризует только данное конкретное явление. Частный характер модели резко ограничивает сферу ее применения. Например, мы не можем модель явления обращения планет вокруг Солнца распространить на явление теплопроводности или электропроводности, и, наоборот, каждое конкретное явление должно быть сопоставлено со своей особой модельной гипотезой. Все сказанное позволяет четко уяснить относительную роль различных звеньев рассуждений при попытках замкнуть парадигму на конкретные свойства явления. При этом также важно понимать, что два перечисленных звена - принципы и гипотезы - принципиально необходимы для рассуждений. Например, цепочку невозможно замкнуть, если отсутствуют принципы. То же самое получается, когда отсутствуют гипотезы. Становится понятным прежнее утверждение о том, что на каждом данном этапе развития науки мировоззренческие концепции (парадигма) остаются неизменными, а все остальные детали любой конкретной теории, базирующейся на этой парадигме, способны изменяться и уточняться. Например, известные изменения, могут претерпеть количественные принципы. Но сильнее всего подвержены изменениям качественные гипотезы. При этом возможные вариации тем существеннее, чем дальше мы отходим от простейшего явления эволюционного ряда [ТРП, стр.23-27].
|
||||
Последнее изменение этой страницы: 2016-06-19; просмотров: 324; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.136.26.156 (0.01 с.) |