Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Среда нулевого сопротивления.Содержание книги
Поиск на нашем сайте
В параграфе 3 гл. VII показано, что интенсиал есть специфическая мера интенсивности силового взаимодействия веществ, причем он пропорционален силе (см. уравнения (94) и (95)). Следовательно, снижение интенсиалов системы должно сопровождаться уменьшением силовых взаимодействий в ее объеме и уменьшением ее сопротивления по отношению к переносимому веществу. В терминах пятого начала ОТ, определяемого обобщенным законом переноса (100), этот факт можно интерпретировать как снижение обобщенных сопротивлений АР и повышение обобщенных проводимостей КР, ибо они связаны между собой обратной зависимостью (106). Точно таким же образом должны изменяться и все частные сопротивления и проводимости, упомянутые в гл. XI. В терминах закона вязкостного трения Ньютона этот факт должен означать снижение коэффициента вязкости. Эффект резкого снижения сопротивления системы при стремлении к нулю одного или нескольких интенсиалов назовем суперпроводимостью [21, с.146]. Очевидно, что этот эффект должен иметь место по отношению к любому истинно простому веществу - хрональному, метрическому, ротационному, вибрационному, вермическому, электрическому, магнитному и т.д. и должен особенно сильно проявляться при одновременном стремлении к нулю всех интенсиалов, характерных для системы. Что касается условно простых веществ, то у них суперпроводимость может проявляться с известной спецификой либо отсутствовать вовсе - все зависит от того, насколько условное вещество отличается от истинного и является ли оно веществом вообще. Характерным примером может служить система, у которой к абсолютному нулю приближается ее температура, - это наиболее изученный ныне случай. У такой системы наблюдаются различные частные эффекты суперпроводимости, причем уровень их проявления оказывается неодинаковым для разных степеней свободы. Применительно к электрической степени свободы суперпроводимость, названная сверхпроводимостью, была открыта в 1911 г. в опытах со ртутью нидерландским физиком Камерлинг-Оннесом, который в начале нашего столетия впервые получил температуры, близкие к абсолютному нулю. Камерлинг-Оннес установил, что сверхпроводимость возникает при температурах ниже определенного предела, именуемого критической температурой Тк. У метрического явления суперпроводимость, названная сверхтекучестью, была открыта П.Л. Капицей в 1938 г. в опытах с жидким гелием. Известна также супертеплопроводность; например, в некоторых сверхпроводящих металлах с уменьшением температуры отмечается сильное возрастание коэффициента теплопроводности; в других металлах, наоборот, коэффициент теплопроводности падает; очень резкое увеличение теплопроводности наблюдается в жидком гелии-II по сравнению с гелием-I - во много миллионов раз. Явление магнетизма дает эффект супермагнитопроводности, в котором роль критической температуры играет так называемая точка Кюри [22, с.93]. Хрональное, ротационное, вибрационное и другие простые явления тоже должны давать соответствующие эффекты суперпроводимости, но пока эти эффекты не изучены. Имеющиеся в настоящее время опытные данные говорят о том, что вязкость резко уменьшается только при очень низких температурах. Что касается суперэлектропроводности то ее уже удалось довести до комнатных температур. Но в эффекте супермагнитопроводности сопротивление ничтожно мало даже при таких высоких температурах, как 1043 К (точка Кюри для железа). В случае вермопроводности картина получается более сложной, неоднозначной. Все это является следствием конкретных свойств скелетной структуры рассматриваемых реальных систем. При обсуждении всех этих эффектов необходимо помнить, что перенос различных веществ происходит в системе, которая сама по себе обладает не равной нулю активностью. Это значит, что в условиях суперпроводимости сопротивление системы в принципе никогда не может обратиться в нуль [18, с.157; 20, с.239; 21, с.148]. Это прямо противоположно существующим ныне представлениям, согласно которым при сверхпроводимости и сверхтекучести электросопротивление и вязкость считаются равными нулю. Опыт подтверждает вывод ОТ. Например, в условиях сверхпроводимости некоторое снижение силы тока было отмечено через 8 лет, а в условиях сверхтекучести скорость жидкого гелия несколько упала уже через 3 ч. Если в качестве системы рассматривается абсолютный вакуум, или парен, то у него все интенсиалы равны нулю. Следовательно, в нем вообще отсутствуют какие бы то ни было силы взаимодействия. Поэтому парен представляет собой среду нулевого сопротивления. В связи с этим напрашивается естественный вопрос: должно ли отсутствие трения означать, что в парене можно перемещаться, не испытывая никакого сопротивления? Очевидно, что нет. Действительно, согласно пятому началу ОТ, для перемещения вещества обязательно надо иметь какую-то, пусть даже ничтожно малую, разность интенсиалов. Но разность интенсиалов, умноженная на меру количества перенесенного вещества, дает работу диссипации, или трения (см. седьмое начало ОТ, уравнение (222)). Следовательно, парен, оставаясь вещью в себе, обладает нулевой вязкостью. Но стоит нам попытаться превратить его в вещь для нас, то есть использовать для практических целей, как он сразу же начинает сопротивляться. Отсюда можно сделать несколько любопытных выводов. Если речь идет о космическом парене (вакууме), то для сильного уменьшения его сопротивления необходимо на поверхности движущейся системы, например корабля, поддерживать значения всех интенсиалов, за исключением, разумеется, скорости, на уровне, близком к абсолютному нулю. Наличие определенного сопротивления даже у космического вакуума позволяет успешно решить и поставленный выше деликатный вопрос о практическом выборе абсолютной системы координат. Очевидно, что в качестве таковой могут служить любые свободно движущиеся в пространстве ансамбли, или тела, мало взаимодействующие с другими телами. При длительном путешествии в космическом вакууме эти ансамбли рано или поздно вследствие трения уменьшат свою скорость до значений, близких к абсолютному нулю. К таким ансамблям можно отнести, например, пылинки или элементарные частицы, в том числе фотоны, излученные много миллиардов лет назад «стеной из звезд», о которой речь пойдет ниже (см. параграф 14 гл. XXVII), и успевшие к нашему времени почти полностью погасить все свои интенсиалы, включая скорость, частоту, температуру и т.д. Здесь уместно коснуться еще одной любопытной проблемы, связанной с космическими перемещениями. Если пространство представляет собой пустой ящик, то применительно к нему в принципе невозможно существование так называемого нуль-пространства, излюбленного писателями-фантастами, ибо между любыми двумя телами или точками внутри ящика всегда должно иметься определенное, не равное нулю расстояние, диктуемое масштабом существующих в ящике протяженностей. В противоположность этому пространство-вещество допускает возможность удаления его квантов (метриантов) на пути полета космического корабля, например, с помощью особого луча. В образовавшемся таким образом безметрическом коридоре свойство протяженности полностью отсутствует - это и есть нуль-пространство. Думаю, что для создания необходимого луча придется использовать также хрональное явление, ибо в парене ход времени стремится к бесконечности, а скорость перемещения - к нулю; хрональная составляющая луча должна устранить этот недостаток. Однако еще более экзотически будет выглядеть перемещение при наличии внехронально-внеметрической оболочки - такое перемещение писатели-фантасты именуют телепортацией (см. параграф 10 гл. XXVII). Как видим, парен сочетает в себе богатейший набор весьма экзотических свойств: он не имеет энергии, но обладает неограниченными запасами вещества; это абсолютно твердое тело и одновременно идеальная текучая жидкость без трения; он является абсолютной точкой отсчета всех энергий и интенсиалов, скоростей и расстояний и т.д. Все эти свойства удалось установить благодаря тому, что мы поднялись на следующую ступень эволюционного развития вещества и его поведения и с этой ступени взглянули на парен. На практике перечисленный свойства могут быть обнаружены, если поставить парен в подходящие для каждого случая условия. Таким образом, абсолютный вакуум, или парен, - это не пустота и не ничто, как думали во времена Торичелли. Парен - это целый мир, населенный угасшим по активности веществом. В каком-то смысле парен есть новая модификация всепроникающего мирового эфира, причем данный эфир не имеет ничего общего с тем, который фигурировал в физических теориях прошлого века; об этом легко судить, сравнив свойства парена и прежнего эфира. Парен представляет собой как бы первозданный, кисель, или проматерию, о которой много говорили древние ученые. Он обладает удивительнейшими свойствами, и общая теория создает реальные предпосылки для их глубокого качественного и количественного изучения [ТРП, стр.319-323].
7. О симметрии мира. Впервые представление о существовании вещества и антивещества (плюс- и минус-вещества) возникло применительно к электрическому явлению. Впоследствии этот факт послужил причиной появления слишком далеко идущих предположений и выводов. В частности, были высказаны гипотезы о возможности существования минус-массы, минус-пространства и т.д., которые в совокупности образуют минус-мир, или антимир, являющийся зеркальным отображением нашего мира и способный аннигилировать (паренировать) с последним. Однако все эти гипотезы и предположения не имеют под собой убедительных оснований. Действительно, в ОТ факт существования вещества постулируется. Это значит, что оно может быть найдено только из опыта. Опыт обнаружил существование определенных антагонистических свойств внутри электрического, магнитного и спинового простых явлений. При объяснении электрического явления, как уже было сказано, победила двухвещественная гипотеза, однако магнитное и спиновое явления не удается согласовать с этой гипотезой без больших натяжек (см. параграфы 18 гл. XV и 10 гл. XVIII). Впрочем, и в случае электрического явления, даже на уровне простейших ансамблей типа позитрона и электрона, протона и антипротона, не наблюдается строгой зеркальной симметрии, в частности, неэлектрические характеристики внутри этих пар не абсолютно одинаковы. С усложнением ансамблей симметрия рассматриваемого типа нарушается еще сильнее. Например, в металлы и полупроводники электрические плюс- и минус-вещества входят совместно и выполняют при этом совершенно различные, несимметричные функции. Чтобы не наводить на мысль о возможности паренирования (аннигиляции) этих зарядов внутри тела, их положительной составляющей присвоено специальное наименование «дырки», олицетворяющей собой отсутствие электрона. Картина усугубляется на более высоких уровнях эволюции. Все это свидетельствует о взаимной симметричной неподменяемости даже электрических плюс- и минус-зарядов. Следовательно, в природе нет и не может быть антимиров, частично или полностью симметричных по отношению к нашему миру. Значит, невозможна и аннигиляция (паренирование) этих миров, и мы можем спать спокойно. У вещества есть только один вид симметрии, определяемой четвертым и шестым началами ОТ и вытекающими из них законами [ТРП, стр.323-324].
|
||||
Последнее изменение этой страницы: 2016-06-19; просмотров: 343; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.135.82 (0.012 с.) |