![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Геометрические характеристики поперечныхСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
А.Н. Дудченко
Практикум по сопротивлению материалов
Новочеркасск 2005 УДК 539.3/4 (076.5) ББК 30.121 я73 Д81 Рецензенты: д–р техн. наук, проф. П.Д. Кравченко, канд. техн. наук, доц. А.И. Резниченко
Дудченко А.Н.
Д 81 Практикум по сопротивлению / Юж.-Рос. гос. тех. ун-т. – Новочеркасск: ЮРГТУ, 2005. – 114 с. Рассмотрены шесть тем сопротивления материалов, по которым разработаны варианты домашних заданий и приведены примеры расчётов с подробными методическими указаниями. Предложены тестовые экзаменационные вопросы по 10 главам теоретического курса. Пособие предназначено для студентов 2 – 3-х курсов дневной и вечерней форм обучения специальностей “Технология машиностроения”, “Оборудование и технология сварочного производства”, “Котло- и реакторостроение”, “Промышленное и гражданское строительство” и др. Оно может быть также полезно студентам заочной формы обучения, испытывающим определённые трудности при освоении теоретического курса сопротивления материалов.
УДК 539.3/4 (076.5)
© Волгодонский институт ЮРГТУ, 2005 © Дудченко А.Н., 2005 ПРЕДИСЛОВИЕ Я слышу – я забываю. Я вижу – я запоминаю. Я делаю – я понимаю! Китайская пословица Учебные планы технических специальностей претерпели в последние годы значительные изменения, при этом существенно сократилось число аудиторных часов, выделяемых на изучение курса “Сопротивление материалов” на лекциях, практических и лабораторных занятиях, и сделан акцент на самостоятельную работу студентов при освоении учебного материала. С другой стороны, важность качественной подготовки инженеров в области прочностных расчётов несомненна, на что указывают продолжающиеся в стране техногенные аварии и катастрофы, вызванные ошибками проектирования, строительства и эксплуатации машин, зданий и сооружений. В этой связи возникает настоятельная необходимость в разработке учебно-методических материалов, способствующих развитию навыков самостоятельной работы студентов с целью ознакомления с проблемами прочности и методами их решения, а также закреплению теоретических знаний путём выполнения домашних заданий. Наряду с вышеизложенным наметилась тенденция к изменению методов проверки знаний студентов от традиционной формы контроля с выводами теоретических формул и углублённым пониманием всего комплекса осваиваемой дисциплины к принятой в большинстве стран рейтинговой, кредитно-модульной, тестовой форме контроля, облегчающей получение квалификационной оценки и формализующей ознакомительный подход студентов к прорабатываемому материалу.
В предлагаемом практикуме рассмотрены отдельные разделы сопротивления материалов, по которым согласно рабочим программам предусмотрены индивидуальные домашние задания на следующие темы: геометрические характеристики поперечных сечений стержней; статически неопределимые стержневые системы при растяжении-сжатии; плоский изгиб балок; расчёт балок методом начальных параметров; расчёт статически неопределимых рам методом сил; внецентренное сжатие неоднородных составных стержней. Все задания предваряются теоретическим материалом, необходимым и достаточным для осознанного решения предлагаемых задач. Рассмотренные примеры расчёта сопровождаются подробными методическими указаниями по их выполнению, при этом особое внимание уделено поэтапному контролю правильности решения и путям поиска возможных ошибок и их исправлению. Имея на руках практикум, каждый студент способен самостоятельно выполнить в домашних условиях индивидуальные задания и только в редких случаях ему потребуется дополнительная консультация и помощь преподавателя. Защита заданий также не вызовет больших затруднений, поскольку контрольные вопросы не выходят за рамки изложенного материала. Для облегчения подготовки к экзамену в практикуме публикуются 355 контрольных вопросов, на которые необходимо обратить внимание при проработке конспекта лекций и на основе которых составлены проверочные тесты, включающие в себя 10 выборочно взятых вопросов с пятью ответами (из них только один правильный). В зависимости от числа правильных ответов (0 – 10) уровень теоретической подготовки оценивается по десятибалльной шкале от отсутствующих знаний (0 баллов) до исключительных знаний (10 баллов).
Геометрические характеристики поперечных Сечений стержней Прочность, жёсткость и устойчивость деталей машин и элементов инженерных сооружений зависит в основном от внешних нагрузок, вида материала и размеров деталей и элементов, называемых в сопротивлении материалов стержнями. Условие прочности стержня можно записать в следующем виде:
где Параметр
где Влияние формы и размеров поперечного сечения на прочность, жёсткость и устойчивость обладает большой нелинейностью и выражается в виде особых геометрических характеристик. На рис. 1.1 показано поперечное сечение стержня, отнесенное первоначально к вспомогательной произвольно выбранной системе координат XOY. Вводятся следующие понятия, связанные с геометрией сечения:
где А и dA – площадь и дифференциал площади поперечного сечения; x, y, ρ – координаты дифференциала площади. В сопротивлении материалов все расчётные формулы получены с использованием главных центральных осей инерции U и V, положение которых определяется следующим образом. Вычисляются координаты центра тяжести сечения во вспомогательной системе координат XOY (рис. 1.1):
Рис. 1.1. Поперечное сечение стержня Находятся моменты инерции относительно центральных осей XC, YC, параллельных исходным осям X, Y (рис. 1.1):
Определяется значение угла
Вычисляются значения главных осевых и центробежного моментов инерции сечения
Для простых фигур (прямоугольника, треугольника, круга и т.д.) и широко используемых в практике составных фигур (двутавров, швеллеров, уголков и т.д.) все геометрические характеристики вычислены и представлены в справочниках в виде формул или таблиц сортамента (приложение). Проектируемые детали машин и элементы инженерных сооружений имеют разнообразные профили, которые можно разбить на составляющие с известными геометрическими характеристиками относительно их собственных центральных осей. В этом случае используются формулы для координат центра тяжести и моментов инерции составных фигур
где Рассмотрим кратко основные свойства геометрических характеристик. Единицы измерений: [ x, y, xC, yC, a, b ] = 1 м (1 см; 1 мм); [ A ]=1 м2 (1 см2; 1 мм2); [ SX, SY ] = 1 м3 (1 см3; 1 мм3); [ JX, JY, JXY, JP ] = 1 м4 (1 см4; 1 мм4). Знаки: площадь А, осевые JX, JY и полярный JP моменты инерции могут быть только положительными. Координаты х, у, хC, уC, а, b, статические моменты площади SX, SY и центробежный момент инерции JXY могут быть положительными, отрицательными и равными нулю.
Статические моменты площади SXC, SYC относительно осей, проходящих через центр тяжести сечения, всегда равны нулю – основное свойство центральных осей. Центробежный момент инерции JUV относительно главных осей всегда равен нулю – основное свойства главных осей. Относительно главных осей моменты инерции JU, JV экстремальны, т.е. один из них принимает максимальное значение, а другой минимальное – определение понятия “главные оси инерции”. При повороте осей координат на любой угол 1.1. Варианты и исходные данные домашнего задания № 1
На рис. 1.2 приведены схемы компоновки поперечных сечений стержней из 4 прокатных элементов: листа, двутавра, швеллера, уголка. Зазоры между элементами показаны условно (при изготовлении стержней элементы прикладывают вплотную и соединяют путем сварки). Вариант задания (№ схемы) выбирают согласно списочному номеру студента в журнале преподавателя. Исходные данные, включающие в себя номера прокатных профилей и толщину листа, выбирают из табл. 1.1 согласно шифру – двум последним цифрам зачётной книжки студента.
Рис. 1.2. Компоновочные схемы поперечных сечений стержней
Таблица 1.1 Номенклатура прокатных профилей
а – первая цифра шифра; б – вторая цифра шифра.
Все размеры и собственные геометрические характеристики двутавра, швеллера и уголка выписывают из таблиц сортамента, приведенных в приложении. Ширину листа (больший из 2 размеров прямоугольника) определяют согласно компоновочной схеме сечения. Геометрические характеристики сечения листа вычисляют по формулам для прямоугольника.
1.2. Условие задания Для заданного составного сечения стержня вычислить главные центральные моменты инерции и моменты сопротивления. Сравнить прочность и жёсткость балки с заданным сечением при её плоском изгибе в 2 главных плоскостях инерции.
Пример расчёта и методические указания Подготовка исходных данных и расчетной схемы Решение задачи начинаем с выбора компоновочной схемы по номеру варианта и номенклатурных данных о фигурах прокатных профилей в соответствии с шифром (рис. 1.3). Порядковые номера фигур на схеме сечения задаём в любой последовательности. Ширину листа определяем согласно рис. 1.3:
Рис. 1.3. Компоновочная схема сечения Изображаем эскизы “простых” фигур и показываем их основные размеры и центральные оси (рис. 1.4). Эскизы двутавра, швеллера и уголка располагаем согласно сортаменту прокатной стали (табл. 1 – 3), эскиз листа показываем так, как он расположен в компоновочной схеме (рис. 1.3). Выписываем из таблиц сортамента те значения размеров и геометрических характеристик, которые потребуются в дальнейших расчётах (рис. 1.4). Необходимо обратить внимание на вычисление моментов инерции прямоугольника: формулы JX = bh 3/12; JY = b 3 h/ 12 справедливы, если b ‖ х и h ‖ y. Центробежный момент инерции JXY фигуры равен нулю, если хотя бы одна из осей инерции (X или Y) является осью симметрии фигуры. Чертим сечение стержня в масштабе, используя компоновочную схему (рис. 1.3) и размеры “простых” фигур (рис. 1.4). Разрешённый масштаб (1:1; 1:2; 1:2,5; 1:4) выбираем с таким расчётом, чтобы поперечное сечение и вспомогательные построения разместились на листе формата А4 (рис. 1.5). И всего поперечного сечения Выбираем произвольную правовинтовую систему координат XOY и из центра тяжести каждой “простой” фигуры Сi проводим собственные центральные оси XCi, YCi, параллельные осям Х, Y. Показываем координаты центров тяжестей каждой фигуры хCi, yCi относительно вспомогательной системы XOY и вычисляем их значения, используя характерные размеры элементов с учётом их расположения в сечении (рис. 1.5):
Рис. 1.4. Эскизы фигур и их характеристики Определяем координаты центра тяжести поперечного сечения в системе осей XOY по формулам (1.3):
Рис. 1.5. Поперечное сечение стержня (М 1:2) Откладываем в масштабе отрезки хC, уC и проводим центральные оси ХС, YС, на пересечении которых получаем центр тяжести сечения С (рис. 1.5). Вычисляем координаты центров тяжестей “простых” фигур относительно центральных осей всего сечения XC, YC, используя формулы
Проверяем выполнение основного свойства центральных осей, для которых статические моменты площади должны равняться нулю:
Учитывая малую погрешность вычислений, заключаем, что координаты центра тяжести поперечного сечения найдены верно (при условии, что правильно определены координаты xCi, yCi).
Инерции сечения Используем формулу (1.1):
Так как угол получился отрицательным, откладываем его по ходу часовой стрелки и проводим главные оси U и V (рис. 1.5). Вычисляем значения тригонометрических функций
Проверяем основное тригонометрическое тождество
Инерции сечения Используем формулы (1.2):
Проверяем правильность вычислений. А. Условие стационарности суммы осевых моментов инерции при повороте осей: JXC + JYC = 4916+2602 = 7518 Б. Условие экстремальности главных осевых моментов инерции: JU = 5624 > { JXC = 4916 ∩ JYC = 2602} – максимум; JV = 1894 < { JXC = 4916 ∩ JYC = 2602} – минимум. В. Основное свойство главных осей: Выше мы вычислили
Относительно главных осей Осевые моменты сопротивления характеризуют изгибную прочность стержней (балок) с заданными геометрическими параметрами сечения. Вычисляются они как отношения моментов инерции к расстояниям от главных осей до наиболее удаленных от них точек сечения. Чтобы найти опасные точки, проведём по две пары касательных, параллельных главным осям U, V (по разные стороны от осей), и выберем те точки касания, которые наиболее удалены от главных осей (устанавливаем визуально или с помощью линейки). В рассматриваемом примере от оси V наиболее удалена т. А, а от оси U – т. В (рис. 1.5). Вычисляем главные координаты опасных точек, используя формулы аналитической геометрии:
где xA, yA, xB, yB, xC, yC – координаты точек А, В и центра тяжести C во вспомогательной системе координат XOY. Из рис. 1.5 находим
В п. 1.3.2 мы вычислили хC = 8,86 см; уC = 19,33 см. Подставляя в формулы эти значения, получаем
Знаки “минус” показывают, что точки удалены от главных осей в сторону отрицательного направления осей U и V. Определяем осевые моменты сопротивления
Пример расчёта и методические указания Подготовка исходных данных и расчётной схемы Решение задачи начинаем с выбора исходных данных из табл. 2.1 и 2.2 согласно шифру. Рассмотрим следующие параметры: Координаты узлов, мм: xА = 1568; yА = 15806; xВ = 4989; yВ = 17050; xС = 18409; yС = 21935; xD = 8409; yD = 7654. Коэффициенты: v 1 = 2; v 2 = 3; v 3 = 1. Силовое воздействие: F = 400 кН; βF =20о. Монтажное воздействие: δ 1 = –2 мм. Температурное воздействие: ∆t 3 = –20оС. Откладываем в масштабе М 1:100 координаты x, y узлов А, В, С, D в произвольно выбранной системе координат ХОУ и соединяем узел D с узлами А, В и С, в результате чего получаем трёхстержневую четырёхшарнирную конструкцию (рис. 2.2). К общему узлу D прикладываем внешнюю силу F под углом βF к горизонтальной оси Х. Показываем в масштабе М 10:1 неточность изготовления одного из стержней с учётом знака δ. При положительном δ стержень изображаем длиннее проектного, а при отрицательном δ – короче. Для рассматриваемого примера расчётная схема показана на рис. 2.3. Прочностная сторона задачи Здесь используем условия прочности стержней в виде двойных неравенств (2.6) и их решение по формулам (2.7): i = 1: N 1 = R 2 = 446333 + 46,0431 A; с 1 = + 446333 H; di = 46,0431 МПа; v 1 = 2; Находим требуемый параметр площади
i = 2: N 2 = R 2= – 54650 – 54,2939 A; c 2 = – 54650 H; d 2 = –54,2939 МПа; v 2 =3; Находим требуемый параметр площади
i = 3: N 3 = – R 3 = –187680 + 19,2267 A; c 3 = – 187680 H; d 3 = 19,2267 МПа; v 3 = 1; Находим требуемый параметр площади Из трёх значений параметра площади в качестве окончательного принимаем наибольшее как удовлетворяющее всем условиям прочности:
Вычисляем требуемые площади всех стержней Аi: А 1 = v 1 A = 2∙1629 = 3258 мм2; А 2 = v 2 А = 3 А = 3∙1629 = 4887 мм2; А 3 = v 3 А = А = 1629 мм2. ПЛОСКИЙ ИЗГИБ БАЛОК Плоский изгиб балок является одним из наиболее опасных случаев нагружения деталей машин и элементов сооружений, когда силовая плоскость проходит через одну из главных центральных осей инерции сечения (см. гл. 1). При плоском поперечном изгибе (в дальнейшем просто “изгибе”) в сечении балки возникают два внутренних усилия: поперечная сила Поперечная сила в произвольном сечении балки равна алгебраической сумме проекций на вертикальную ось Y всех внешних нагрузок, расположенных по одну сторону от рассматриваемого сечения, т. е.
При вычислениях используют следующее правило знаков (рис. 3.1): Рис. 3.1. Правило знаков для поперечной силы внешняя нагрузка, вращающая отсечённый элемент балки (шарнирно закреплённый в центре тяжести сечения Изгибающий момент в произвольном сечении балки равен алгебраической сумме моментов относительно горизонтальной оси X всех внешних нагрузок, расположенных по одну сторону от рассматриваемого сечения, т. е.
При вычислениях используют следующее правило знаков (рис. 3.2): Рис. 3.2. Правило знаков для изгибающего момента внешняя нагрузка, искривляющая отсечённый элемент балки (жёстко защемленный в рассматриваемом сечении i–i) выпуклостью вниз, создаёт положительный изгибающий момент, а выпуклостью вверх –отрицательный. С целью определения наиболее опасных сечений строят эпюры поперечных сил и изгибающих моментов по длине балки. Для проверки правильности построения эпюр используют третий закон Ньютона (действие равно противодействию) и дифференциальные зависимости между внутренними усилиями Q, M и интенсивностью распределённой нагрузки q. Ньютоновские проверки выполняют для каждой границы между грузовыми участками, где наблюдается изменение характера нагружения, например приложены сила или момент, начинается или заканчивается распределённая нагрузка и др. Эти проверки заключаются в выполнении условий
где Дифференциальные проверки должны выполняться для всех сечений балки. Обычно они записываются в виде
где d – дифференциал; z – абсцисса сечения (аргумент); Полезно помнить, что геометрический смысл первой производной – это тангенс угла наклона касательной к графику функции, а второй производной – кривизна функции в рассматриваемой точке. Угол наклона положителен, если он образован поворотом оси Z против часовой стрелки; кривизна положительна, если имеет выпуклость внизу; распределённая нагрузка положительна, если направлена вверх. Третий вид проверок – это интегральные зависимости между функциями
Здесь Полезно помнить, что приращение функции – это число, а интегралы в правой части – это площади, ограниченные графиком функции и осью Z в пределах грузового участка. При изгибе балки в точках её поперечных сечений появляются два вида напряжений: нормальные где “–” в правой части объясняется тем, что при положительных значениях М и y появляются сжимающие напряжения Касательные напряжения имеют второстепенное значение при расчётах балок на прочность, так как сравнительно редко являются причиной разрушения. Эти напряжения зависят от поперечной силы и определяются по формуле Д.И. Журавского:
где С учётом вышесказанного расчёт балок выполняют, исходя из условия прочности по нормальным напряжениям
где При проектировочном расчёте балок на прочность, когда известны внешние нагрузки, типы опор, длина и материал балки, строят эпюру изгибающих моментов |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Поделиться: |
Познавательные статьи:
Последнее изменение этой страницы: 2016-04-20; просмотров: 872; Нарушение авторского права страницы; Мы поможем в написании вашей работы!
infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.142.2 (0.016 с.)