Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Практическое занятие Представление о правильных многогранниках (тетраэдре, кубе, октаэдре, додекаэдре и икосаэдре)
Содержание книги
- Практических работ по математике
- Критерии оценивания практических работ
- Вычисление и сравнение корней. Выполнение расчетов с радикалами
- Решение прикладных задач. Нахождение значений логарифма по произвольному основанию. Переход от одного основания к другому
- Решение логарифмических уравнений
- Геометрия раздел 3. Прямые и плоскости в пространстве
- Угол между прямой и плоскостью. Двугранный угол
- Задачи на подсчёт числа размещений, перестановок, сочетаний
- Признаки взаимного расположения прямых. Угол между прямыми
- Расстояние от точки до плоскости, от прямой до плоскости, расстояние между плоскостями
- Векторы. Действия с векторами. Декартова система координат в пространстве
- Скалярное произведение векторов
- Использование векторов при решении математических и прикладных задач
- Простейшие тригонометрические уравнения. Простейшие тригонометрические неравенства. Обратные тригонометрические функции
- Обратные тригонометрические функции. Арксинус, арккосинус, арктангенс. Радианный метод измерения углов вращения и связь с градусной мерой
- Основные тригонометрические тождества
- Монотонность, четность, нечетность, ограниченность, периодичность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума
- Построение и чтение графиков функций. Исследование функции. Свойства линейной, квадратичной, кусочно-линейной и дробно-линейной функций
- Степенная функция, ее график и свойства
- Непрерывные и периодические функции. Свойства и графики синуса, косинуса, тангенса и котангенса. Обратные функции и их графики
- Геометрия раздел 8. Многогранники и круглые тела
- Усеченная пирамида. Тетраэдр
- Сечения куба, призмы и пирамиды
- Практическое занятие Представление о правильных многогранниках (тетраэдре, кубе, октаэдре, додекаэдре и икосаэдре)
- Объем и его измерение. Интегральная формула объема
- Подобие тел. Отношения площадей поверхностей и объемов подобных тел.
- Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения, параллельные основанию.
- Шар и сфера, их сечения. Касательная плоскость к сфере
- Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков
- Вторая производная, ее геометрический и физический смысл.
- Раздел 10. Интеграл и его применение
- Событие, вероятность события, сложение и умножение вероятностей
- Дискретная случайная величина, закон ее распределения
- Понятие о законе больших чисел .
- Решение практических задач с применением вероятностных методов
- Уравнения и системы уравнений
- Использование свойств и графиков функций при решении уравнений и неравенств
- Применение математических методов для решения содержательных задач из различных областей науки и практики
Цель работы:
обучающийся должен:
знать:
- определение правильных многогранников;
- виды, элементы, свойства правильных многогранников;
уметь:
- строить правильные многогранники.
Сведения из теории:
Выпуклый многогранник называется правильным, если его гранями являются равные правильные многоугольники, и все многогранные углы равны.
Рассмотрим возможные правильные многогранники и прежде всего те из них, гранями которых являются правильные треугольники. Наиболее простым таким правильным многогранником является треугольная пирамида, гранями которой являются правильные треугольники (рис. слева). В каждой ее вершине сходится по три грани. Имея всего четыре грани, этот многогранник называется также правильным тетраэдром, или просто тетраэдром, что в переводе с греческого языка означает четырехгранник.

Многогранник, гранями которого являются правильные треугольники, и в каждой вершине сходится четыре грани, изображен на рисунке посередине. Его поверхность состоит из восьми правильных треугольников, поэтому он называется октаэдром.
Многогранник, в каждой вершине которого сходится пять правильных треугольников, изображен на рисунке справа. Его поверхность состоит из двадцати правильных треугольников, поэтому он называется икосаэдром.
Заметим, что поскольку в вершинах выпуклого многогранника, не может сходиться более пяти правильных треугольников, то других правильных многогранников, гранями которых являются правильные треугольники, не существует.
Аналогично, поскольку в вершинах выпуклого многогранника может сходиться только три квадрата, то, кроме куба (рис. слева), других правильных многогранников, у которых гранями являются квадраты, не существует. Куб имеет шесть граней и поэтому называется также гексаэдром.

Многогранник, гранями которого являются правильные пятиугольники, и в каждой вершине сходится три грани, изображен на рисунке справа. Его поверхность состоит из двенадцати правильных пятиугольников, поэтому он называется додекаэдром.
Задания для самостоятельного решения:
1) Чему равны плоские углы додекаэдра?
2) Представьте многогранник – бипирамиду, сложенную из двух правильных тетраэдров совмещением их оснований. Будет ли он правильным многогранником?
3) Является ли пространственный крест (фигура, составленная из семи равных кубов – рис.) правильным многогранником? Сколько квадратов ограничивает его поверхность? Сколько у него вершин В и ребер Р?

4) Ребро октаэдра равно 1. Определите расстояние между его противоположными вершинами.
5) Сколько красок потребуется для раскраски граней правильных многогранников, так, чтобы соседние грани были окрашены в разные цвета?
Контрольные вопросы:
1. Дайте определение правильного многогранника.
2. Сколько вершин, ребер и граней имеют: а) тетраэдр; б) октаэдр; в) куб; г) икосаэдр; д) додекаэдр?
Практическое занятие
|