Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Практических работ по математике↑ Стр 1 из 38Следующая ⇒ Содержание книги
Поиск на нашем сайте
Для обучающихся I курса
Голышманово, 2018 г.
Методические рекомендации по выполнению практических работ по математике для обучающихся I курса/ составители О.Г. Князева, О.Н. Парфенова /стр. 43.
Составители: О.Г. Князева, преподаватель высшей категории ГАПОУ ТО «Голышмановский агропедколледж»; О.Н. Парфенова, преподаватель ГАПОУ ТО «Голышмановский агропедколледж».
Печатается по решению ЦМК естественно-научных дисциплин Протокол №____ от «____» ___________2018 г.
Ответственный за выпуск: Д.Е. Майдибор
Рецензенты:
Л.Г. Пономарева, председатель ЦМК естественно-научных дисциплин, преподаватель высшей категории. И.Г. Кузьминых, руководитель ШМО естественно-математических наук Голышмановского района, учитель высшей категории МАОУ «Голышмановская СОШ №4».
Методические рекомендации по выполнению практических работ по математике для обучающихся I курса составлены с целью формирования умений применять теоретические занятия на практических занятиях. Данные рекомендации предназначены для изучения и закрепления практических навыков по математике, для формирования у обучающихся компетенций, необходимых для качественного освоения ОПОП СПО на базе основного общего образования с получением среднего общего образования. Рекомендации помогут обучающимся подготовиться к зачетам и экзаменам, позволят путем решения контрольных заданий и ответов на контрольные вопросы проанализировать уровень овладения учебным материалом.
Содержание
Введение
Методические рекомендации по выполнению практических работ по математике для обучающихся I курса составлены с учетом Примерной основной образовательной программы среднего общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16-з) на основе требований ФГОС среднего общего образования, предъявляемых к структуре, содержанию и результатам освоения учебной дисциплины «Математика», в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований федеральных государственных образовательных стандартов и получаемой профессии или специальности среднего профессионального образования (письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Минобрнауки России от 17.03.2015 № 06-259). Содержание программы «Математика» направлено на достижение следующих целей: - обеспечение сформированности представлений о социальных, культурных и исторических факторах становления математики; - обеспечение сформированности логического, алгоритмического и математического мышления; - обеспечение сформированности умений применять полученные знания при решении различных задач; - обеспечение сформированности представлений о математике как части обще человеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления. Цель и планируемые результаты освоения дисциплины: В результате освоения дисциплины обучающийся должен уметь: - выполнять арифметические действия над числами, сочетая устные и письменные приемы; находить приближенные значения величин и погрешности вычислений (абсолютнаяи относительная); сравнивать числовые выражения; - находить значение корня, степени, логарифма, тригонометрических выражений на основе определения, используя при необходимости инструментальные средства; пользоваться приближенной оценкой на практических расчетах; - выполнять преобразования выражений, применяя формулы, связанные со свойствами степеней, логарифмов, тригонометрических функций; - выполнять практические расчеты по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства. - находить производные элементарных функций; - использовать производную для изучения свойств функций и построения графиков; - применять производную для проведения приближенных вычислений, решать задачи прикладного характера на нахождение наибольшего и наименьшего значения; - вычислять в простейших случаях площади и объемы с использованием определенного интеграла; - решать прикладные задачи, в том числе социально-экономические и физические, на нахождение скорости и ускорения; - распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями; - анализировать в простейших случаях взаимное расположение объектов в пространстве; - изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач; - строить простейшие сечения куба, призмы, пирамиды; - решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов); - использовать при решении стереометрических задач планиметрические факты и методы; - проводить доказательные рассуждения в ходе решения задач. В результате освоения дисциплины обучающийся должен знать: - значение математической науки для решения задач, возникающих в теории и практике; - широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе; - значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия чисел, создания математического анализа, возникновения и развития геометрии; - универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности; - вероятностный характер различных процессов окружающего мира. Освоение содержания учебной дисциплины «Математика» обеспечивает достижение студентами следующих результатов: Личностных: - сформированность представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, идеях и методах математики; - понимание значимости математики для научно-технического прогресса, сформированность отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей; - развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, для продолжения образования и самообразования; - овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для освоения смежных естественно-научных дисциплин и дисциплин профессионального цикла, для получения образования в областях, не требующих углубленной математической подготовки; - готовность и способность к образованию, в том числе самообразованию на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; - готовность и способность к самостоятельной творческой и ответственной деятельности; - готовность к коллективной работе, сотрудничеству со сверстниками в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности; - отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем. Метапредметных: - умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях; - умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты; - владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания; - готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников; - владение языковыми средствами: умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства; - владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств для их достижения; - целеустремленность в поисках и принятии решений, сообразительность и интуиция, развитость пространственных представлений; способность воспринимать красоту и гармонию мира. Предметных: - сформированность представлений о математике как части мировой культуры и месте математики в современной цивилизации, способах описания явлений реального мира на математическом языке; - сформированность представлений о математических понятиях как важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий; - владение методами доказательств и алгоритмов решения, умение их применять, проводить доказательные рассуждения в ходе решения задач; владение стандартными приемами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств; - сформированность представлений об основных понятиях математического анализа и их свойствах, владение умением характеризовать поведение функций, использование полученных знаний для описания и анализа реальных зависимостей; - владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах; сформированность умения распознавать геометрические фигуры на чертежах, моделях и в реальном мире; применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием; - сформированность представлений о процессах и явлениях, имеющих вероятностный характер, статистических закономерностях в реальном мире, основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин; - владение навыками использования готовых компьютерных программ при решении задач.
В данных методических указаниях Вы найдете изложение теоретического материала, справочный материал, примеры решения задач, задания для самостоятельных занятий, для подготовки к контрольным работам, зачету, экзамену. Методические указания не являются учебником, поэтому не все изучаемые понятия рассмотрены одинаково подробно. По этой причине в некоторых случаях необходимо приложить для освоения материала больше усилий, чем в других. В данном пособии рассматриваются элементы математики, относящиеся к периоду математики переменных величин и современному периоду, имеющие большое значение в современной фундаментальной и прикладной математике. Работая над каждой темой, лучше всего сначала изучить теоретический материал, повторить ранее изученные формулы, теоремы, разобраться в приведенных примерах. Если все понятно, то можно переходить к выполнению практических заданий. Академик И.П. Павлов говорил: «Последовательность, последовательность и последовательность. С самого начала своей работы приучите себя к строгой последовательности в накоплении знаний. Никогда не беритесь за последующее, не изучив предыдущего».
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2021-11-27; просмотров: 191; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.219.68 (0.015 с.) |