Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Частотные характеристики типовых звеньев.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
К простейшим типовым звеньям относятся: · усилительное, · инерционное (апериодическое 1-го порядка), · интегрирующие (реальное и идеальное), · дифференцирующие (реальное и идеальное), · апериодическое 2-го порядка, · колебательное, · запаздывающее.
Частотные характеристики звена определяют его реакцию на гармонический входной сигнал в установившемся режиме (т.е. после завершения переходных процессов). Частотной характеристикой динамического звена называют функцию комплексного аргумента jw, полученную путем формальной замены s на jw в выражении передаточной функции Получим связь частотной характеристики с известными понятиями. Для этого рассмотрим динамическое звено с передаточной функцией W(s) и сигналами, . Пусть, – абсолютно интегрируемые функции и равны нулю при t<0. Тогда частотные спектры этих сигналов (преобразование Фурье) этих функций можно определить следующим образом – . Получим отношение спектров - Таким образом, частотную характеристику динамического звена можно определить как отношение спектра (преобразования Фурье) выходного сигнала к спектру входного сигнала. Знание частотной характеристики звена позволяет определить выходной спектр по входному . Рассмотрим динамическое звено – Получим спектр выходного сигнала – импульсной характеристики Тогда имеем , то есть преобразование Фурье от импульсной характеристики равно частотной характеристике динамического звена. Рассмотрим передаточную функцию, состоящую из n-го количества элементов. Последовательность выражений позволяет найти амплитуду и фазу колебаний на выходе системы при гармоническом воздействии на ее входе. Модуль этого выражения показывает, во сколько раз увеличивается или уменьшается амплитуда колебаний на выходе системы по сравнению с амплитудой колебаний на входе. Аргумент вектора F(jω) описывает фазовый угол колебаний по отношению колебаниям на входе => (*) определяет частотную характеристику, называемую амплитудно-фазовой частотной характеристикой (АФЧХ). АФЧХ строится на комплексной плоскости j – мнимая единица. - коэффициент, характеризующий изменение амплитуды при изменении частоты, при изменяющейся частоте, называется амплитудно-частотной характеристикой (АЧХ). дает представление о фазовом сдвиге выходных колебаний и он называется фазово-частотной характеристикой (ФЧХ) АФЧХ: Вещественные или мнимые частотные характеристики связаны с АЧХ и ФЧХ следующим образом: При анализе САР на устойчивость и качества процесса регулирования, а также при решении других задач, часто обращаются к ЛЧХ Усиление L(ω) = 20lg|Ф(jω)| = 20lgA(ω) [дБ] – является единицей логарифмической относительно величины. Изменения относительно двух величин в 10 раз соответствует изменению усиления на 20 дБ. Известно, что АЧХ представляет собой отношение 2-х амплитуд: входного и выходного сигналов.
Версия по Петрову: К простейшим типовым звеньям относятся: · усилительное, · инерционное (апериодическое 1-го порядка), · интегрирующие (реальное и идеальное), · дифференцирующие (реальное и идеальное), · апериодическое 2-го порядка, · колебательное, · запаздывающее.
Частотные характеристики усилительного звена можно получить по его передаточной функции, при этом АФХ, АЧХ и ФЧХ определяются следующими соотношениями: . Частотные характеристики интегрирующего звена определяются соотношениями:
Колебательное звено Амплитудно-фазовая частотная характеристика (АФХ) имеет вид и определяется соотношением Амплитудно-частотные характеристики (АЧХ) для различных значений x имеет вид (рис. 22б) и определяется соотношением Фазовая частотная характеристика (ФЧХ) имеет вид и определяется соотношением Частотные характеристики колебательного звена имеют вид
|
||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-06; просмотров: 746; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.105.174 (0.007 с.) |