Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Необходимо уделить внимание таким понятиям как дифференциация и интеграция.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Дифференциация. В действительности двух абсолютно сходных систем (объектов) нет. Различия могут быть столь ничтожны, что обнаруживаются лишь при достаточно глубоком исследовании, но они существуют. При этом, чем сложнее сравниваемые системы, тем больше различий между ними, и наоборот, чем проще, однороднее системы, тем более сходны они друг с другом. Несхожесть систем обусловлена тем, что неодинакова среда двух сравниваемых систем и неодинаковы внешние отношения. Чем сложнее система и ее внешняя среда, тем существеннее различия в сравниваемых системах. Так что даже для абсолютно однородных (изоморфных) систем при неизбежных различиях внешней среды различия в отношениях с внешней средой неизбежны, что ведет к изменению внутреннего строения и поведения системы. Истинно и обратное утверждение: если система окружена однородной средой, то, какова бы ни была степень однородности среды, внутрисистемные различия неизбежно будут возрастать. При этом изменения будут нарастать прогрессирующим темпом, поскольку всякая часть системы, подвергнутая изменению, служит не только центром новых изменений, но и их источником. Все более отличаясь от других частей, эта часть становится центром различных реакций на воздействие внешней среды, увеличивая таким образом разнообразие действующих сил и порождаемых ими следствий, что и означает дифференциацию. Процесс дифференциации означает возрастание различий, несоответствий между частями. Он носит лавинообразный характер. Данное положение приводит к выводу о том, что дифференциация в системах необратима и само это явление абсолютно объективно — принцип дифференциации в организации систем. Принцип дифференциации и механизм отбора тесно связаны. Дифференциация увеличивает внутреннее разнообразие системы, а отбор идет по линии взаимодополняющих связей. Чем интенсивнее процесс дифференциации, тем больше возможность для отбора устойчивых взаимодополняющих отношений. Таким образом, всякая дифференциация, всякое «разделение функций», всякая «специализация» компонентов системы (частей целого) создают совокупность взаимодополняющих соотношений. Этот принцип действует во всех системах, составляя основу концепции целостности (взаимозависимости) окружающего мира. Этот принцип лежит в основе дружбы, сотрудничества и всяких иных устойчивых связей между людьми. Формирование любой частной (локальной) сети межличностных взаимоотношений, а также ее устойчивость зависят от того, насколько включенные в нее личности дополняют друг друга в том или ином отношении. Во всех случаях части целого взаимодополняющи и находятся в непрерывном взаимодействии, что выражается в форме взаимного функционального дополнения. Можно сказать, что основой устойчивости системной дифференциации является развитие взаимодополняющих связей между компонентами системы. Двойственность дифференциации. С развитием дифференциации в системе неизбежно возникает внутренняя несбалансированность (дисгармония). Всякая реально развивающаяся система заключает в себе противоположно направленные, или борющиеся, силы — противоречия (принцип антагонизма). Части целого становятся разными в своей организации и различаются, в частности, по силе сопротивления внешним воздействиям. Возрастание противоречий ведет к ослаблению взаимосвязей между ее компонентами, что уменьшает действие цепной связи, вследствие чего сопротивляемость системы неизбежно снижается. Вместе с тем дифференциация через взаимодополняющие связи приводит ко все большей устойчивости систем. Эта универсальная двойственность системной дифференциации — одно из важнейших организационных обобщений, имеющее характер закона. Дифференциальное изменение элементов системы как объективное явление неизбежно ведет к ее преобразованию. В результате гомогенная система может превратиться в гетерогенную, а в гетерогенных системах изменится характер внутрисистемных связей и возрастут внутрисистемные противоречия. При этом чем неоднороднее система, тем легче наступает дальнейшая дифференциация ее элементов, т. е. чем разнообразнее система, тем разнообразнее происходящие в ней изменения, осуществляемые под воздействием какого-либо фактора. Чем выше структурный уровень системы (место, занимаемое системой в структурной иерархии), тем большую роль в ее преобразовании играет процесс дифференциации. Интеграция. Возрастание системных расхождений неизбежно приводило бы всякую систему к самоуничтожению, если бы этому не противодействовала интеграция - процесс, направленный на сохранение целостности системы, упрочнение связей и соподчинение её частей. Интеграция возникает на основе и в результате дифференциации и является по существу ее особой формой. Однако функциональное назначение интеграции иное, чем дифференциации. Она направлена на усиление и формирование связей, ослабляющих системные противоречия и ведущих к сохранению функциональной целостности системы, ее качественной определенности. Естественно, что такие связи возникают или усиливаются в результате дифференциации, направляемой отбором. Интеграция ослабляет и разрушает неустойчивые, дезорганизующие соотношения и тем самым уничтожает или нейтрализует элементы, нарушающие целостность системы. Вместе с тем взаимное приспособление, разрушая или ослабляя системные противоречия, создает условия для новой дифференциации на более высоком уровне. Системная интеграция основывается на отборе, сохраняющем и усиливающем связи и соотношения, которые увеличивают структурное и функциональное соответствие элементов системы. Чем свободнее комбинируются элементы системы, тем продуктивнее отбор. Если две системы соединяются и будут взаимно проникать друг в друга, обмениваться элементами и энергией, то материал для отбора будет богаче и разнообразнее. Простейший случай интеграции — слияние двух систем. При этом возможны два результата: 1) увеличение масштабов системы (система становится больше по числу одинаковых элементов); 2) выравнивание (усреднение) качественной определенности системы. Наиболее сложная форма интеграции — приобретение системой новых качественных свойств (особенностей, новой структуры), дающих новый материал для отбора. Нередко интеграция слишком разошедшихся (качественно различных и противоречивых) систем приводит к новым противоречиям, и тогда процесс перестройки протекает более интенсивно. Чем более схожи системы, чем меньше расхождения, тем менее существенны изменения и структурные преобразования. Очевидно, что в каждом отдельном случае должен существовать некоторый оптимум. Ослабление системных противоречий — только одна сторона интеграции. В большинстве случаев интеграция разных частей системы или даже систем увеличивает возможности дальнейшего их развития в степени большей, чем простое сложение. Возможности системы возрастают за счет синергических связей. Формы интеграции. Существуют разные формы интеграции и, следовательно, разные типы интегрированных систем. Исходя из способов обеспечения устойчивости систем под воздействием внешней среды, можно выделить две основные формы интеграции: статическую и динамическую. При статической форме целостность системы сохраняется благодаря жесткой фиксации структуры «оболочного», или «каркасного», типа (ограда вольера, русло реки, стены крепости, граница, скелет позвоночных и т. п.). При динамической форме целостность системы обеспечивается не внешними фиксирующими приспособлениями (устройствами, специальными органами), а внутренней организацией, имеющей подвижный, гибкий характер связей. Такие самоорганизующиеся системы более пластичны, более приспособлены к перегруппировке элементов. Известны два типа динамической формы интеграции: централистский и свободный. Наиболее простейшим типом динамической интеграции является централистский. В образованной в результате такой интеграции системе один элемент (или одна подсистема) играет главную (или доминирующую) роль в функционировании всей системы. Этот элемент называется центром. В нейтралистском типе интеграции все связи сходятся к центру. Функция центра существенно отличается от функции остальных элементов. Возможно существование бицентрических, полицентрических и моноцентрических систем централистского типа в зависимости от количества центров: один, два, много. Типичное структурное строение таких систем может быть представлено в виде «звездной» конструкции (рис. 2), когда системообразующие связи проходят через центр. В социальной сфере такой структуры в чистом виде не существует, ибо каждый элемент так или иначе связан с другими. В результате и сама структура абсолютной централизации трансформируется, приобретая вид колесообразной структуры (рис. 3). Наиболее сложным типом нейтралистской интеграции является иерархический централизм — иерархическая лестница централистских форм. Структура таких систем может быть представлена в виде пирамиды (рис. 4). С удлинением иерархической цепи, так же как и при увеличении количества элементов, непосредственно связанных с центром, воздействие центра на элементы уменьшается. В силу различий между центральными и периферийными элементами происходит накопление системных противоречий. Поэтому и развиваются свободные (демократические) формы интеграции: • линейная, где все звенья системы связаны последовательно друг с другом (рис. 5); • кольцевая, в которой звенья связаны друг с другом также последовательно, но выход последнего звена одновременно является входом первого (рис. 6); • многосвязная, в которой, в отличие от кольцевой, каждое звено связано со всеми остальными (рис. 7); • матричная, где каждое звено имеет разную степень связанности с остальными элементами (по количеству связей, рис 8).
Свободный тип интеграции характеризуется отсутствием звена, выполняющего функции центра интеграции. Структуры систем, образованные на основе свободной формы интеграции, имеют разную сравнительную эффективность с точки зрения функционирования системы. Процессы самоорганизации так же являются одним из ключевых вопросов изучения дисциплины «Теория организации». Рассмотренные выше организационные процессы, ведущие к преобразованию систем, могут осуществляться в двух формах: целенаправленной сознательной деятельности человека (организации) и самоорганизации. Выделяются три типа процессов самоорганизации: 1) процессы, благодаря которым происходит самозарождение организационной формы, т. е. возникновение качественно нового целостного формирования из некоторой совокупности объектов определенного уровня; 2) процессы, поддерживающие определенный уровень организационной формы при изменении внешних и внутренних условий ее функционирования; 3) процессы совершенствования и саморазвития организационной формы, которые способны накапливать и использовать прошлый опыт. Проблема самоорганизации стала интенсивно разрабатываться в кибернетике, в частности, в работах Н. Винера, Дж. фон Неймана, У. Эшби и др. Эти авторы связывали самоорганизацию со свойством управления и делали акцент на проблеме организации. Нетрудно убедиться, что самоорганизация здесь явно или неявно предполагает наличие либо внешнего агента (человека-организатора), либо цели, которая задается самоорганизующейся системе человеком. Только в синергетике разработка проблемы самоорганизации вносит новый вклад в развитие теории организации, рассматривая вопрос об организации вне связи с управлением и акцентируя внимание на проблеме связи понятий организации и самоорганизации, порядка и беспорядка, энтропии и информации. Эта точка зрения, на наш взгляд, более продуктивна, так как, раскрывая содержание понятия «самоорганизация», мы обогащаем понятие «организация». Организацию можно понять и определить через самоорганизацию, но не наоборот. Вполне возможно, что многочисленные попытки построения общей теории организации до сих пор не имеют успеха, в том числе из-за недостаточного внимания к феномену самоорганизации. Синергетика ставит перед собой задачу не только изучения данного феномена и максимизации (минимизации) синергетических эффектов, но и управления процессами самоорганизации. Термин «управляемое развитие» должен быть заменен термином «направляемое развитие». Существует точка зрения, согласно которой в формировании организационных форм роль внешней среды доминирует, т. е. само возникновение материальных структур почти полностью определяется внешними факторами, поэтому рассматривать самоорганизацию лишь как внутреннее свойство системы в принципе неверно: самоорганизация невозможна без внешней среды. Самоорганизация не является локальным процессом, протекающим независимо от внешней среды. Но хотя самоорганизация и зависит от типа внешней среды, от истории развития и возможных форм ее реализации, хотя внешние условия играют важную роль в выборе поведения материальных систем, последнее невозможно объяснить, исходя только из внешних факторов как определяющих. Самоорганизацию целесообразно подразделять на самоорганизацию естественных и самоорганизацию искусственных систем. Очевидно, что до появления человека существовала естественная самоорганизация в «чистом» виде. И сейчас такие процессы самоорганизации происходят в природе естественным путем. К самоорганизации искусственных систем относятся процессы, которые совершаются в самоорганизующихся системах, созданных руками человека. Однако вполне очевидно, что природа процессов самоорганизации не зависит от типа систем, и естественные предпосылки ее возникновения, а также формализованный аппарат описания самого процесса идентичны. Следует отметить, что не только в искусственных, но и во многих естественных системах человек способен оказывать влияние на управляющие параметры и «стохастические» силы и этим в известной мере предопределять момент изменения состояния системы (точка бифуркации) и соответственно сценарий развития самоорганизующейся системы. В этом случае можно говорить о размывании границы между процессами организации и самоорганизации. По этой же причине, на наш взгляд, нельзя говорить и о противопоставлении понятий «организация» и «самоорганизация», как нельзя ни сводить соотношение между этими понятиями к формально-логическому пониманию «шире — уже» (оно носит сложный характер), ни противопоставлять их. Это два взаимодополняющих процесса. Примером тому может служить демографическая система, в которой наиболее ярко проявляется диалектическое единство организации и самоорганизации. Раскрытие принципов самоорганизации зависит от понимания и адекватного определения понятия самоорганизации. Как следует из литературных источников, самоорганизация — это понятие для обозначения процесса структурообразования в результате действия внутренних детерминантов при специфических внешних условиях. При этом причиной возникновения структур являются внутренние детерминанты, внутренние свойства системы, внешние же условия (факторы) — всего лишь поводом. Таким образом, многие авторы при определении понятия самоорганизации совершенно верно указывают в качестве определяющих внутренние причины, однако при этом игнорируют (или опускают как нечто несущественное) факт открытости системы для внешних инициирующих воздействий. Вместе с тем некоторые философы отдают предпочтение внешним детерминантам, т. е. считают, что роль внешней среды доминирует. В предложенном определении понятия самоорганизации наблюдается сближение двух точек зрения, но именно такой подход к пониманию самоорганизации представляется наиболее перспективным. Самоорганизация в синергетическом понимании — это процесс спонтанного образования высокоупорядоченных по времени и (или) в пространстве устойчивых структур в гетерогенных открытых неравновесных динамических системах любой природы вследствие внутрисистемных закономерностей при индуцировании внешними воздействиями. Понятие самоорганизации тесно связано с более фундаментальными понятиями порядка и беспорядка. Проблема «порядок — беспорядок» привлекает внимание исследователей различных областей современной науки. Эти понятия, впервые возникшие в физике, используются для изучения широкого круга явлений не только в естественных, технических, но и в общественных науках, что говорит о необходимости последовательно развивать и уточнять представление о порядке и беспорядке в структуре материи. Понятия «порядок» и «беспорядок» наряду с понятием «самоорганизация» являются ключевыми в синергетике, исследующей не только процессы образования устойчивых макроскопических структур в сложных неравновесных открытых динамических системах любой природы, как во времени, так и в пространстве, но и обратное явление — переход от упорядоченного состояния к хаосу. Самоорганизация и хаос, или, в более общем смысле, порядок и беспорядок, — это основные структурные характеристики материи. В рамках дисциплины необходимо изучить общие организационные законы, такие, например, как закон развития. В результате организационных процессов в системах различной природы происходят постоянные изменения; системы находятся в динамическом режиме — развитии. Вся природа.участвует в этом процессе, изобретает соответствующие складывающимся условиям новые формы организации, новые способы действия, а механизмы отбора по определенным правилам отсеивают те формы организации, которые не отвечают «гармонии сегодняшнего дня», равновесию систем. В результате конкурентной борьбы элементов системы за ресурсы, которые обеспечивают равновесие всей системы, часть элементов неизбежно гибнет и замещается зарождающимися новыми, более соответствующими сложившимся условиям. Всякая система в реальной среде подвержена случайным отклонениям от равновесия, и если она находится в неустойчивом состоянии, то из-за взаимодействия с внешней средой эти колебания усиливаются и в конце концов приводят к ликвидации прежних порядка и структуры. Этот деструктивный аспект дополняется затем конструктивным, состоящим в том, что в результате взаимодействия элементы старой системы приходят к согласованному поведению, вследствие чего в системе возникают кооперативные процессы и спонтанно формируются новый порядок и новое равновесие. Формирование и развитие новых структур непосредственно связаны с действием случайных факторов. Мысль о том, что без случайного невозможно появление нового, высказанная в форме догадки еще античным философом Демокритом, нашла подтверждение в синергетике, теории механизма отбора. Развитие — это накопление изменений, а началом любого развития служат случайные изменения, которые постепенно приводят к неустойчивости системы. В результате воздействия большого числа случайных факторов в открытых неравновесных системах происходит их взаимное согласование, возникают процессы, сопровождающиеся взаимодействием элементов вновь образующейся структуры. По какому пути пойдет дальнейшая эволюция, какая альтернатива будет выбрана системой, во многом зависит от случайных факторов и внутреннего состояния системы. Механизм развития обусловлен самоорганизацией и механизмом отбора, условия которого не остаются постоянными. В обыденном сознании понятие «развитие» ассоциируется с улучшением состояния системы. Однако направления развития могут быть различными. Возможно прогрессивное развитие систем — переход от низшего к высшему уровню, от простого к сложному, от менее совершенного — к более совершенному, и регрессивное — обратное движение. Переход от низшего уровня к более высокому не означает повышения упорядоченности или устойчивости: нет ничего устойчивее атомного уровня — атомов низших порядковых номеров,-а упорядоченность кристалла максимальна. Переход к следующему уровню — это прежде всего усложнение связей со средой. С переходом к более высокому структурному уровню система оказывается в более сложной среде. Объективным критерием усложнения структуры как следствия перехода к более высокому уровню является соотношение системы и среды. Усложнение выражается в увеличении границы соприкосновения со средой. Чем прогрессивнее система (стоит на более высоком иерархическом уровне), тем разнообразнее ее связи с внешней средой. Количественной мерой прогресса служит информация, заключенная в структуре системы. Количество информации, приобретаемой в результате прогрессивного преобразования, равно количеству неопределенности, которое при этом уничтожается. В молекуле больше информации, чем в атоме, в клетке — больше,,чем в молекуле, в организме — больше, чем в клетке, и т. д. В отличие от прогресса регресс характеризуется уменьшением разнообразия, т. е. уменьшением количества информации. Прогресс и регресс — диалектически взаимосвязанные процессы. Одного нет без другого. Прогресс и регресс — это составляющие процесса развития, обеспечивающего эволюцию систем, их качественную определенность и изменение окружающего мира. Суть закона развития — непрерывные изменения систем, обусловливающие их переход с одного уровня иерархии на другой и появление новых эмерджентных свойств.
4.2. Закон самосохранения и механизм устойчивости
Закон самосохранения можно сформулировать следующим образом: любая система сознательно или стихийно стремится к сохранению своей качественной определенности. Однако сохранение качественной определенности нельзя понимать в буквальном смысле. Качественная определенность как любое явление динамична и зависит от внешней среды. В данном случае закон самосохранения следует понимать как сохранение системы в изменяющейся внешней среде. Закон самосохранения реализуется в устойчивости системы по отношению к внешним и внутренним возмущениям — таково условие существования системы. Устойчивость системы относительна: система, вполне устойчивая в одних условиях, окажется неустойчивой в других. Различают количественную и структурную устойчивость. Количественная устойчивость характеризуется числом и разнообразием компонентов, входящих в систему, т. е. чем больше компонентов входит в систему, тем она устойчивее по отношению к внешним и внутренним возмущениям. Подтверждение этому мы часто наблюдаем в природе и человеческом обществе. Количественная устойчивость тесно связана с понятием «большая система». Однако не каждая большая система устойчива или обладает большей устойчивостью, чем меньшая по размерам система. Известно, что любая система характеризуется еще и количеством связей между компонентами, определяющих структуру системы. Чем разнообразнее связи, тем система сложнее. Уничтожение или разрыв одной или нескольких связей под воздействием внешнего (внутреннего) возмущения оказывает в данном случае меньшее воздействие на состояние системы и, как следствие, она более устойчива. Таким образом, можно говорить о структурной устойчивости. Например, хорошо организованный коллектив (упорядоченные связи, отлаженное взаимодействие) более устойчив и более производителен, чем превосходящая его по численности, но слабо организованная толпа. Количественная и структурная устойчивости тесно связаны между собой. Количественное увеличение компонентов усиливает устойчивость системы также за счет увеличения числа связей, т. е. повышается и ее структурная устойчивость. Подобных явлений в жизни наблюдается достаточно много. Большие и сложные организационные системы не только более устойчивы, но и имеют тенденцию к дальнейшему росту и расширению. Они получают определенный запас прочности, выходящий за пределы обеспечения выживаемости. Так, многие предприятия, учреждения, организации имеют возможность получать больше энергии (ресурсов), чем требуется для производства своей продукции (услуг). Это становится одним из факторов сохранения и расширения социально-хозяйственных систем. Однако увеличение числа компонентов может привести и к уменьшению структурной устойчивости из-за ослабления и разрушения некоторых взаимосвязей. Например, непродуманная диверсификация, разрушающая миссию организации. Количественная и структурная устойчивости могут быть выражены определенными величинами: коэффициенты массы, энергии и т. п. характеризуют количественную устойчивость, а число внутренних связей — структурную. Структурная устойчивость бывает двух типов: статическая и динамическая. Статическая устойчивость характерна для систем статического равновесия. Это в основном горно-геологические комплексы — творения природы, здания и сооружения, механические конструкции, созданные человеком, и закрытые (замкнутые) социальные системы, т. е. системы неподвижного равновесия. Устойчивость таких систем определяется прочностью их конструкции (связей между компонентами) и условиями соприкосновения с внешней средой. По мере «выветривания», «стирания», «изнашивания», «вырождения» их устойчивость будет, хотя и медленно, падать. Совершенно иной характер имеет динамическая устойчивость, свойственная системам подвижного равновесия. Устойчивость таких систем достигается путем уравновешивания каждого возникающего изменения другим, ему противоположным, т. е. процессы разрушения и созидания идут в таких системах параллельно и взаимно уравновешивают друг друга. Два противоположных направления изменений создают иллюзию статичности. Они и обеспечивают динамическую устойчивость системы. Динамическое равновесие никогда не является абсолютно точным, т. е. не может быть полного, безусловного равенства противоположных изменений, уравновешивающих друг друга. Изменения так или иначе накапливаются. Однако ничтожными изменениями как бы пренебрегают, что и создает иллюзию статичности. Так, многие социальные организации на протяжении достаточно долгого времени сохраняют свое тождество (инвариантность) за счет того, например, что один курс действий ориентирован на стабильность и сохранение достигнутого положения путем покупки, поддержания, проверки и ремонта оборудования, набора и обучения работников, использования отработанных правил и процедур, а другой курс ориентирован на изучение рынка, определение стратегических зон хозяйствования, развитие производства новой продукции и т. п. И то и другое необходимо в интересах выживания организации. Большие и хорошо оснащенные организации, но не приспособленные к изменению условий, долго просуществовать не смогут. Вместе с тем приспособляемые, но не стабильные организации будут неэффективными, и также маловероятно, что они смогут долго существовать. Наблюдается определенная зависимость устойчивости системы от величины и разнообразия соприкосновений системы с внешней средой. В закрытых (замкнутых) системах связь между компонентами достаточно тесная, а область соприкосновения со средой небольшая. Отсюда и сопротивляемость, а следовательно, и устойчивость системы выше. Это очевидная закономерность. Прямоугольное сооружение хуже противостоит ветру и морозу, чем куполообразное. Последние обладают меньшей «парусностью» и меньше подвержены воздействию ветровых нагрузок (меньше контакта с внешней средой). Люди давно это поняли, строя свои жилища куполо- и шарообразного вида, такие как иглу, яранга, чум — на севере, юрта — в Средней Азии и т. п. Замкнутые системы, например замкнутые общины, племена, партии, религиозные секты с определенной и всеми разделяемой догмой, более устойчивы, чем научная или философская школы, включающие разные направления, течения и т. п. Замкнутые системы имеют меньшую область соприкосновения с внешним окружением, к которой адаптировалась ее структура. Однако большая устойчивость закрытых систем возможна только в условиях более или менее постоянного по величине и однородности воздействия внешней среды. В условиях же неопределенно-изменчивой среды, от которой практически нельзя «отгородиться», создать абсолютно непроницаемую защиту, более устойчивыми оказываются открытые системы в силу динамического равновесия. Таким образом, устойчивость закрытых систем весьма условна и относительна. Закрытые системы, не получая энергии, информации, ресурсов извне, со временем могут разрушаться, особенно когда меняются условия внешнего воздействия. Открытая же система характеризуется активным обменом с внешней средой и может совершенствоваться, сохранять свою структуру, т. е. процессы отдачи системой своих ресурсов (энергии, информации, продукции и т. п.) и получения подобных извне балансируют друг друга, создавая иллюзию статичности. Сущность механизма отбора. Системы сохраняют и изменяют свою устойчивость благодаря механизму отбора. Впервые он был выявлен в биологии, но его действие в дальнейшем стали наблюдать в различных областях знаний: в астрономии, физике, химии, психологии, социологии, языкознании и т. д., хотя и в разных формах. Изучение действия отбора в разных областях показало, что он имеет универсальный всеобщий характер — как механизм регулирования устойчивости систем — и применим ко всем классам явлений. Универсализация принципа отбора вовсе не означает биологизацию всех типов организационных систем. В теории организации принцип отбора освобожден от его биологической специфики, формализован и понимается очень абстрактно. Термин «отбор» используется, в сущности, лишь по традиции. Вслед за естественными науками механизм отбора был использован кибернетикой. Как указывал У. Росс Эшби, в результате всякой однозначной операции происходит отбор форм, обладающих особой способностью противостоять ее изменяющему действию. Существует тесная и существенная связь между мыслительной деятельностью и отбором, между процессом решения задачи и процессом эволюции. В частности, можно обнаружить формальное сходство между процессом естественного отбора (в дарвинском смысле) и процессом отыскания управленческого решения задачи, в котором получение ответа состоит, по существу, в отборе. Основная идея отбора заключается в дифференциальном уничтожении и закреплении компонентов и связей между ними, конечно, если между ними есть хотя бы самые малые различия, т. е. системы сохраняют свое равновесие благодаря отбору и закреплению в своей структуре полезных (активных) компонентов и связей, развивающих качественную определенность системы, или уничтожению (разрушению) компонентов и связей, препятствующих развитию. Отбор как механизм регулирования устойчивости действует в разных классах и типах систем с разной направленностью. При прочих равных условиях в гомогенных системах отбор будет происходить менее интенсивно, чем в гетерогенных, вследствие отсутствия разнообразия. В системах с большой взаимозависимостью элементов отбор так же неизбежно ограничен, как ограничен везде, где имеются жесткие связи между элементами. Естественный отбор подразумевает изменения по линии наименьшего сопротивления: система развивается путем замены элементов, обладающих наименьшим сопротивлением внешним воздействиям. Основная и элементарная форма отбора — простое сохранение или уничтожение компонентов. Сохранение устойчивых компонентов и отбор изменений и новых комбинаций (положительный отбор) увеличивают число остаточных форм и разнообразие систем. Уничтожение (отрицательный отбор) упрощает разнообразие, устраняя все непрочное, противоречивое и внося в него упорядоченность. Механизм отбора содержит три элемента: 1) объект — то, что подвергается отбору: сами компоненты системы, связи и отношения между компонентами; 2) фактор — то, что действует на систему; 3) основу, или базис, отбора — часть (элемент, компонент) системы, от которой зависит ее сохранение или уничтожение, т. е. та «критическая масса» системы, при которой сохраняется ее качественная определенность. Отбор осуществляется в двух различных формах: 1) эмерджентной (творческой, созидательной), когда благодаря новой, ранее не существующей комбинации тех или иных элементов возникают новые связи, новые формы, новые системы, новые свойства и качества системы; 2) матричной, когда отбор направлен не на создание чего-то нового, а лишь на копирование существующих систем: копии как бы штампуются по матрице (шаблону). Принципиальное отличие эмерджентной формы отбора от матричной заключается в том, что при эмерджентной форме в качестве фактора отбора служит непосредственно внешняя среда, в то время как при матричной — матрица, модель существующей системы. Матричный отбор при постоянной матрице. Простейшим примером такого отбора может служить процесс штамповки. Механизм отбора здесь выражается в сохранении тех форм и -контуров металла, которые изоморфны штампу. Большая часть технических процессов осуществляется по принципу матричного отбора в его наиболее абстрактном понимании. На матричном отборе основаны процессы воспитания и обучения. В частности, воспитание сводится к дифференциальному сохранению идей и представлений, соответствующих взглядам и убеждениям воспитателя. В результате матричного отбора модель репродуцируется в виде более или менее изоморфных отображений. В ряде случаев степень изоморфности может быть столь высокой, что воспроизводится точная копия. Это чаще всего наблюдается в технике (штампы) и в биологических системах (молекулы ДНК). В биологических системах матричный отбор заключается в случайном переборе всех возможных связей и комбинаций до тех пор, пока не будет достигнуто соответствие матрице. Этот отбор получил название консервативного матричного отбора, поскольку система не приобретает новых качеств и не несет дополнительной информации (количество информации не увеличивается). Матричный отбор с переменной матрицей или комбинацией матриц. В отличие от матричного отбора при постоянной матрице такой отбор имеет эмерджентный характер и в свою очередь дает материал для отбора самих матриц. Отбор с переменной матрицей начинается по одной матрице, но с какого-то момента продолжается по другой, отличающейся от первой. В результате новая система получит свойства и черты, отличные от первой и второй матриц (базовых систем), но сохраняющие некоторую изоморфность обеих. Аналогичный эффект достигается при комбинации матриц, образующих гибридную матрицу. Матрица сама может стать объектом отбора. В этом случае осуществляется обратное воздействие на матрицу, своего рода обратный отбор, известный в кибернетике как обратная связь. Гибридогенные новые формы организмов подвергаются отбору, в результате чего эволюционируют их генетические матрицы. В данном случае отбор осуществляется в эмерд
|
||||||||||||||||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 496; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.252.196 (0.017 с.) |