Доказательство неравенств методом математической индукции. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Доказательство неравенств методом математической индукции.



Доказательство методом математической индукции основано на следующей аксиоме: если предложение, в формулировку которого входит натуральное число п, истинно при п=1 и из его истинности при n=k (где ) следует, что оно истинно и при , то оно истинно при всех натуральных значениях п.

Таким образом, доказательство по методу математической индукции проводится следующим образом:

1) доказываемое утверждение проверяется при п =1;

2) предполагая справедливость утверждения при n=k, доказывается справедливость утверждения для n=k+1.

Некоторые утверждения справедливы не для всех натуральных п, а для п, начиная с некоторого числа р. В таком случае первый шаг доказательства – это проверка справедливости утверждения для п=р .

П р и м е р. Доказать, что если , то

Доказательство. При n=3 неравенство верно: . Предположим, что неравенство выполняется при n=k (k>3), т.е. предположим, что , и докажем, что тогда неравенство выполняется и при n=k+1, т. е. докажем, что

В самом деле, имеем: . Итак, .

Но при любом натуральном значении k. Следовательно, тем более .

Согласно методу математической индукции можно сделать вывод о том, что доказываемое неравенство справедливо при всех .

 

Доказательство неравенств методом полной индукции.

Полная индукция – это метод рассуждений, при котором вывод делается на основании рассмотрения всех случаев, возможных по условию задачи.

П р и м е р. Доказать, что если .

 

Доказательство. Рассмотрим случаи:

 

1) . Получаем

, т.к.

Неравенство верно.

2) , т.е. .

Тогда . Неравенство справедливо.

3) т.е. .

Тогда . Неравенство справедливо.

Мы рассмотрели все возможные случаи. Значит неравенство верно для .

 

6. Доказательство неравенств с помощью методов математического анализа.

В этом случае доказательство неравенств сводят к исследованию соответствующих функций с помощью производных.

 

П р и м е р. Доказать неравенство

Доказательство. Перепишем неравенство в виде: .

Рассмотрим функцию .

Найдём производную . При , . Это значит, что при возрастает, причём . Поэтому при .

 

Литература

1. В.Н. Литвиненко, А.Г. Мордкович. Практикум по элементарной математике. Алгебра. Тригонометрия. – М, 1999

2. Рогановский Н.М., Рогановская Е. Н. Элементарная математика- Мн., 2000

Тема: Иррациональные уравнения и неравенства.

План

1. Иррациональные уравнения, основные методы их решения.

2. Иррациональные неравенства.

 

Иррациональные уравнения.

Иррациональными называются уравнения и неравенства, содержащие переменную под знаком корня или под знаком возведения в дробную степень.

Все корни чётной степени, входящие в уравнение, являются арифметическими, т.е. если подкоренное выражение отрицательно, то корень лишён смысла; если подкоренное выражение равно нулю, то корень также равен нулю; если подкоренное выражение положительно, то значение корня положительно.

Все корни нечётной степени, входящие в уравнение, определены при любом действительном значении подкоренного выражения и в зависимости от знака подкоренного выражения могут принимать как неотрицательные, так и отрицательные значения.

Основные методы решения иррациональных уравнений:

1. возведение обеих частей уравнения в одну и ту же степень;

2. замена переменной;

3. умножение обеих частей уравнения на одну и ту же функцию;

4. применение свойств функций, входящих в уравнение.

Следует помнить, что ряд преобразований, которые применяются при реализации указанных методов, например возведение обеих частей уравнения в чётную степень, приводят к уравнению-следствию. Оно, наряду с корнями исходного уравнения содержит и другие корни, которые называют посторонними. Поэтому после решения уравнения-следствия необходимо найти способ отсеять посторонние корни. Обычно это можно сделать при помощи проверки, которая в данном случае рассматривается как один из этапов решения.

Возможен и другой путь реализации некоторых методов решения иррациональных уравнений – переход к равносильным системам, в которых учитывается область определения уравнения и требование неотрицательности обеих частей уравнения, возводимых в чётную степень.

Рассмотрим несколько примеров.

 

Пример 1. Решим уравнение .

Решение. Возводим обе части уравнения в квадрат, получаем:

Проверка показывает, что только является корнем исходного уравнения.

Ответ: -4.

 

Пример 2. Решим уравнение

 

Решение. Выполним замену. Обозначим: заметим, что .

Тогда и .

Исходное уравнение принимает вид:

 

Полученное уравнение равносильно системе:

Из получившейся системы, имеем: .

Возвращаемся к подстановке, получаем:

Ответ: 1; .

Пример 3. Решим уравнение .

Решение: Пусть

Тогда имеем:

Откуда последовательно получаем:

Возвращаясь к первоначальным подстановкам, получим:

 

Откуда

С помощью проверки убеждаемся, что оба корня являются корнями исходного уравнения.

 

Ответ: 1; -15.

Пример 4. Решим уравнение .

Решение: Рассмотрим функцию .

Исходное уравнение принимает вид: .

. Функция монотонно возрастает на всей области определения. Поэтому уравнение может иметь не более одного корня. Легко видеть, что является корнем уравнения.

Ответ: 5.

 

Иррациональные неравенства.

Основным методом решения иррациональных неравенств является метод сведения исходного неравенства к равносильной системе рациональных неравенств или совокупности таких систем. При этом используются те же приёмы, что и при решении иррациональных уравнений: возведение обеих частей неравенства в одну и ту же степень, введение новых переменных, использование свойств функций, входящих в обе части неравенства и т.д.

Рассмотрим некоторые виды иррациональных неравенств и подходы к их решению:

1) Неравенство вида равносильно системе

 

2) Неравенство вида равносильно неравенству .

3) Неравенство вида равносильно совокупности систем

4) Неравенство вида равносильно системе

 

Пример 5. Решим неравенство .

 

Решение. Введём новую переменную . Тогда исходное неравенство принимает вид:

.

Решая это неравенство и возвращаясь к исходным переменным, получаем: .

Ответ: .

Пример 6. Решим неравенство .

 

Решение: Перепишем неравенство в виде: .

Это неравенство равносильно системе неравенств:

Откуда получаем .

Пример 6. Решим неравенство .

Решение: Рассмотрим функцию . Область определения этой функции . Функция возрастает на всей области определения, причём . Значит, неравенство решений не имеет.

Ответ: нет решений.

Литература

1. В.Н. Литвиненко, А.Г. Мордкович. Практикум по элементарной математике. Алгебра. Тригонометрия. – М, 1999

2. Рогановский Н.М., Рогановская Е. Н. Элементарная математика- Мн., 2000

 

Текстовые задачи

План



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 6901; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.28.48 (0.026 с.)