Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Правило Крамера. Метод обратной матрицы

Поиск

Правило Крамера. Метод обратной матрицы

 

Представляю Вашему вниманию вторую часть урока Как решить систему линейных уравнений? В первой части мы рассмотрели немного теоретического материала, метод подстановки, а также метод почленного сложения уравнений системы. Всем, кто зашел на сайт через эту страницу рекомендую ознакомиться с первой частью. Возможно, некоторым посетителям покажется материал слишком простым, но по ходу решения систем линейных уравнений я сделал ряд очень важных замечаний и выводов, касающихся решения математических задач в целом.

А сейчас мы разберём правило Крамера, а также решение системы линейных уравнений с помощью обратной матрицы (матричный метод). Все материалы изложены просто, подробно и понятно, практически все читатели смогут научиться решать системы вышеуказанными способами.

Настоятельно рекомендую скачать программу для автоматизированного решения систем по формулам Крамера и с помощью обратной матрицы. Всегда приятно знать правильный ответ заранее, более того, программа позволит сразу обнаружить ошибку по ходу решения задачи, что значительно сэкономит время!

 

Как составить уравнение плоскости по трём точкам?

Уравнение плоскости, проходящей через три различные точки , которые не лежат на одной прямой, можно составить по формуле:

Если известны три различные точки, не лежащие на одной прямой, то легко найти два неколлинеарных вектора, параллельных данной плоскости:

 

Как построить плоскость, параллельную данной?

Пример 8

Построить плоскость, проходящую через точку параллельно плоскости .

Решение: Обозначим известную плоскость через . По условию требуется найти плоскость , которая параллельна плоскости и проходит через точку .

Выполним схематический чертёж, который поможет быстрее разобраться в условии и понять алгоритм решения:

У параллельных плоскостей один и тот же вектор нормали. Добавить нечего =) Осталось оформить мат в два хода:

1) Из уравнения найдём вектор нормали плоскости: .

2) Уравнение плоскости составим по точке и вектору нормали :

Ответ:

Как выполнить проверку, я уже рассказал.

Продолжаем раскидывать стог сена пространственной геометрии:

Совпадающие плоскости

Две плоскости совпадают, тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, то есть, существует такое число «лямбда», что выполняются равенства

Рассмотрим плоскости и составим систему:

Из каждого уравнения системы следует, что . Таким образом, система совместна и плоскости совпадают.

Параллельные плоскости

Две плоскости параллельны тогда и только тогда, когда их коэффициенты при переменныхпропорциональны:, но.

На практике очень часто первые три коэффициента банально совпадают (). Посмотрим, например, на уравнения параллельных плоскостей из Примера №8:

Комментарии, думаю, излишни, всё прекрасно видно. Но на всякий случай выполню формальную проверку, вдруг кому потребуется. Составим систему:

Из первых трёх уравнений следует, что , а из четвёртого уравнения следует, что , значит, система несовместна. Но коэффициенты при переменных пропорциональны, следовательно, плоскости параллельны.

Задача о построении параллельной плоскости уже была, поэтому решим что-нибудь новое:

Пересекающиеся плоскости

Третий, самый распространённый случай, когда две плоскости пересекаются по некоторой прямой :

Две плоскости пересекаются тогда и только тогда, когда их коэффициенты при переменных НЕ пропорциональны, то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства

Сразу отмечу важный факт: Если плоскости пересекаются, тосистема линейных уравнений задаётуравнение прямой в пространстве. Но о пространственной прямой позже.

В качестве примера рассмотрим плоскости . Составим систему для соответствующих коэффициентов:

Из первых двух уравнений следует, что , но из третьего уравнения следует, что , значит, система несовместна, и плоскости пересекаются.

Проверку можно выполнить «по пижонски» одной строкой:

Параллельные плоскости мы уже разобрали, теперь поговорим о перпендикулярных плоскостях. Очевидно, что к любой плоскости можно провести бесконечно много перпендикулярных плоскостей, а для того, чтобы зафиксировать конкретную перпендикулярную плоскость, необходимо знать две точки:

Пример 12

Дана плоскость . Построить плоскость , перпендикулярную данной и проходящую через точки .

Решение: Начинаем анализировать условие. Что мы знаем о плоскости ? Известны две точки. Можно найти вектор , параллельный данной плоскости. Маловато. Было бы неплохо где-нибудь нарыть ещё один подходящий вектор. Так как плоскости должны быть перпендикулярны, то подойдёт нормальный вектор плоскости .

Проводить подобные рассуждения здОрово помогает схематический чертёж:

Для лучшего понимания задачи отложите вектор нормали от точки в плоскости .

Следует заметить, что две произвольные точки могут располагаться в пространстве как угодно, и перпендикулярная плоскость может быть развёрнута к нам совершенно другим ракурсом. Кстати, теперь чётко видно, почему одна точка не определит перпендикулярную плоскость – вокруг единственной точки будет «вращаться» бесконечно много перпендикулярных плоскостей. Так же нас не устроит и единственный вектор (без всяких точек). Вектор является свободным и «наштампует» нам бесконечно много перпендикулярных плоскостей (которые, к слову, все будут параллельны). В этой связи минимальную жёсткую конструкцию обеспечивают две точки.

Алгоритм разобран, решаем задачу:

1) Найдём вектор .

2) Из уравнения снимем вектор нормали: .

3) Уравнение плоскости составим по точке (можно было взять и ) и двум неколлинеарным векторам :

Ответ:

Проверка состоит из двух этапов:

1) Проверяем, действительно ли плоскости будут перпендикулярны. Если две плоскости перпендикулярны, то их векторы нормали будут ортогональны. Логично. Из полученного уравнения снимаем вектор нормали и рассчитываем скалярное произведение векторов:

Таким образом,

2) В уравнение плоскости подставляем координаты точек . Обе точки должны «подойти».

И первый, и второй пункт можно выполнить устно.

Перейдём к заключительной задаче урока:

Умножение вектора на число

Сначала о коллинеарности векторов. Два вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Грубо говоря, речь идёт о параллельных векторах. Но применительно к ним всегда используют прилагательное «коллинеарные».

Представьте два коллинеарных вектора. Если стрелки данных векторов направлены в одинаковом направлении, то такие векторы называются сонаправленными. Если стрелки смотрят в разные стороны, то векторы будут противоположно направлены.

Обозначения: коллинеарность векторов записывают привычным значком параллельности: , при этом возможна детализация: (векторы сонаправлены) или (векторы направлены противоположно).

Произведением ненулевого вектора на число является такой вектор , длина которого равна , причём векторы и сонаправлены при и противоположно направлены при .

Правило умножения вектора на число легче понять с помощью рисунка:

Разбираемся более детально:

1) Направление. Если множитель отрицательный, то вектор меняет направление на противоположное.

2) Длина. Если множитель заключен в пределах или , то длина вектора уменьшается. Так, длина вектора в два раза меньше длины вектора . Если множитель по модулю больше единицы, то длина вектора увеличивается в раз.

3) Обратите внимание, что все векторы коллинеарны, при этом один вектор выражен через другой, например, . Обратное тоже справедливо: если один вектор можно выразить через другой, то такие векторы обязательно коллинеарны. Таким образом: если мы умножаем вектор на число, то получится коллинеарный (по отношению к исходному) вектор.

4) Векторы сонаправлены. Векторы и также сонаправлены. Любой вектор первой группы противоположно направлен по отношению к любому вектору второй группы.

Как найти длину отрезка?

Длина, как уже отмечалось, обозначается знаком модуля.

Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле

Если даны две точки пространства и , то длину отрезка можно вычислить по формуле

Примечание: Формулы останутся корректными, если переставить местами соответствующие координаты: и , но более стандартен первый вариант

Пример 3

Даны точки и . Найти длину отрезка .

Решение: по соответствующей формуле:

Ответ:

Для наглядности выполню чертёж

Отрезок это не вектор, и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.

Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:

Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».

Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:

Читаем!!!

Обратите внимание на важный технический приёмвынесение множителя из-под корня. В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: . Конечно, оставить ответ в виде не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.

Вот другие распространенные случаи:

Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: . Да, разделилось нацело, таким образом: . А может быть, число ещё раз удастся разделить на 4? . Таким образом: . У числа последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: . В результате:
Готово.

Вывод: если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.

В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.

Давайте заодно повторим возведение корней в квадрат и другие степени:

Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.

Задание для самостоятельного решения с отрезком в пространстве:

Пример 4

Даны точки и . Найти длину отрезка .

Решение и ответ в конце урока.

Как найти длину вектора?

Если дан вектор плоскости , то его длина вычисляется по формуле .

Если дан вектор пространства , то его длина вычисляется по формуле .

Данные формулы (как и формулы длины отрезка) легко выводятся с помощью небезызвестной теоремы Пифагора.

Пример 5

Даны точки и . Найти длину вектора .

Я взял те же точки, что и в Примере 3.

Решение: Сначала найдём вектор :

По формуле вычислим длину вектора:

Ответ:

Не забываем указывать размерность – «единицы»! Всегда ли, кстати, нужно рассчитывать приближенное значение (в данном примере 8,94), если этого не требуется в условии? С моей точки зрения, лишним не будет, отсутствие приближенного значения тянет на придирку. Округление целесообразно проводить до 2-3-х знаков после запятой.

Выполним чертеж к задаче:

В чём принципиальное отличие от Примера 3? Отличие состоит в том, что здесь речь идёт о векторе, а не об отрезке. Вектор можно переместить в любую точку плоскости.

А в чём сходство Примера 3 и Примера 5? Геометрически очевидно, что длина отрезка равна длине вектора . Так же очевидно, что длина вектора будет такой же. По итогу:

Задачу 3 можно было решить и вторым способом, повторю условие: Даны точки и . Найти длину отрезка .

Вместо применения формулы , поступаем так:
1) Находим вектор .
2) А теперь ссылаемся на то, что длина отрезка равна длине вектора :

Этот способ широко практикуется в ходе решений задач аналитической геометрии.

Вышесказанное справедливо и для пространственного случая

Для тренировки:

Пример 6

а) Даны точки и . Найти длину вектора .
б) Даны векторы , , и . Найти их длины.

Решения и ответы в конце урока.

Угол между векторами

Продолжаем выжимать полезные вещи из скалярного произведения. Снова посмотрим на нашу формулу . По правилу пропорции сбросим длины векторов в знаменатель левой части:

А части поменяем местами:

В чём смысл данной формулы? Если известны длины двух векторов и их скалярное произведение, то можно вычислить косинус угла между данными векторами, а, следовательно, и сам угол.

Скалярное произведение – это число? Число. Длины векторов – числа? Числа. Значит, дробь тоже является некоторым числом . А если известен косинус угла: , то с помощью обратной функции легко найти и сам угол: .

Пример 7

Найти угол между векторами и , если известно, что .

Решение: Используем формулу:

На заключительном этапе вычислений использован технический приём – устранение иррациональности в знаменателе. В целях устранения иррациональности я домножил числитель и знаменатель на .

Итак, если , то:

Значения обратных тригонометрических функций можно находить по тригонометрической таблице. Хотя случается это редко. В задачах аналитической геометрии значительно чаще появляется какой-нибудь неповоротливый медведь вроде , и значение угла приходится находить приближенно, используя калькулятор. Собственно, такую картину мы ещё неоднократно увидим.

Ответ:

Опять, не забываем указывать размерность – радианы и градусы. Лично я, чтобы заведомо «снять все вопросы», предпочитаю указывать и то, и то (если по условию, конечно, не требуется представить ответ только в радианах или только в градусах).

Теперь вы сможете самостоятельно справиться с более сложным заданием:

Пример 7*

Даны – длины векторов , и угол между ними . Найти угол между векторами , .

Задание даже не столько сложное, сколько многоходовое.
Разберём алгоритм решения:

1) По условию требуется найти угол между векторами и , поэтому нужно использовать формулу .

2) Находим скалярное произведение (см. Примеры №№3,4).

3) Находим длину вектора и длину вектора (см. Примеры №№5,6).

4) Концовка решения совпадает с Примером №7 – нам известно число , а значит, легко найти и сам угол:

Краткое решение и ответ в конце урока.

Второй раздел урока посвящен тому же скалярному произведению. Координаты. Будет даже проще, чем в первой части.

 

Скалярное произведение векторов,
заданных координатами в ортонормированном базисе

На уроке Векторы для чайников мы рассматривали два случая: векторы на плоскости и векторы в трехмерном пространстве, при этом «плоские» и «пространственные» формулы были весьма похожи. Для скалярного произведения векторов всё точно так же! Прежде чем продолжать дальше, скажу, что все рассмотренные выше утверждения, теоремы и задачи (первого раздела данной статьи) справедливы как для плоскости, так и для пространства.

Второе важное замечание касается базиса. В данном разделе рассматриваются только ортонормированные базисы плоскости и пространства.

Повествование опять пойдёт параллельно – и для векторов плоскости и для пространственных векторов.

Угол между двумя прямыми

Что ни угол, то косяк:

В геометрии за угол между двумя прямыми принимается МЕНЬШИЙ угол, из чего автоматически следует, что он не может быть тупым. На рисунке угол, обозначенный красной дугой, не считается углом между пересекающимися прямыми. А считается таковым его «зелёный» сосед или противоположно ориентированный «малиновый» угол .

Если прямые перпендикулярны, то за угол между ними можно принимать любой из 4-х углов.

Чем отличаются углы ? Ориентацией. Во-первых, принципиально важным является направление «прокрутки» угла. Во-вторых, отрицательно ориентированный угол записывается со знаком «минус», например, если .

Зачем я это рассказал? Вроде бы можно обойтись и обычным понятием угла. Дело в том, что в формулах, по которым мы будем находить углы, запросто может получиться отрицательный результат, и это не должно застать вас врасплох. Угол со знаком «минус» ничем не хуже, и имеет вполне конкретный геометрический смысл. На чертеже для отрицательного угла следует обязательно указывать стрелкой его ориентацию (по часовой стрелке).

Как найти угол между двумя прямыми? Существуют две рабочие формулы:

Пример 10

Найти угол между прямыми

Решение и Способ первый

Рассмотрим две прямые, заданные уравнениями в общем виде:

Если прямые не перпендикулярны, то ориентированный угол между ними можно вычислить с помощью формулы:

Самое пристальное внимание обратим на знаменатель – это в точности скалярное произведение направляющих векторов прямых:

Если , то знаменатель формулы обращается в ноль, а векторы будут ортогональны и прямые перпендикулярны. Именно поэтому сделана оговорка о неперпендикулярности прямых в формулировке.

Исходя из вышесказанного, решение удобно оформить в два шага:

1) Вычислим скалярное произведение направляющих векторов прямых:
, значит, прямые не перпендикулярны.

2) Угол между прямыми найдём по формуле:

С помощью обратной функции легко найти и сам угол. При этом используем нечётность арктангенса (см. Графики и свойства элементарных функций):

Ответ:

В ответе указываем точное значение, а также приближённое значение (желательно и в градусах, и в радианах), вычисленное с помощью калькулятора.

Ну, минус, так минус, ничего страшного. Вот геометрическая иллюстрация:

Неудивительно, что угол получился отрицательной ориентации, ведь в условии задачи первым номером идёт прямая и «открутка» угла началась именно с неё.

Если очень хочется получить положительный угол, нужно поменять прямые местами, то есть коэффициенты взять из второго уравнения , а коэффициенты взять из первого уравнения . Короче говоря, начать необходимо с прямой .

Утаивать не буду, сам подбираю прямые в том порядке, чтобы угол получился положительным. Так красивее, но не более того.

Для проверки решения можно взять транспортир и измерить угол.

Способ второй

Если прямые заданы уравнениями с угловым коэффициентом и не перпендикулярны, то ориентированный угол между ними можно найти с помощью формулы:

Условие перпендикулярности прямых выражается равенством , откуда, кстати, следует очень полезная взаимосвязь угловых коэффициентов перпендикулярных прямых: , которая используется в некоторых задачах.

Алгоритм решения похож на предыдущий пункт. Но сначала перепишем наши прямые в нужном виде:

Таким образом, угловые коэффициенты:

1) Проверим, будут ли прямые перпендикулярны:
, значит, прямые не перпендикулярны.

2) Используем формулу:

Ответ:

Второй способ уместно использовать тогда, когда уравнения прямых изначально заданы с угловым коэффициентом. Следует отметить, что если хотя бы одна прямая параллельна оси ординат, то формула не применима вообще, поскольку для таких прямых угловой коэффициент не определён (см. статью Уравнение прямой на плоскости).

Есть и третий способ решения. Идея состоит в том, чтобы вычислить угол между направляющими векторами прямых с помощью формулы, рассмотренной на уроке Скалярное произведение векторов:

Здесь уже речь идёт не об ориентированном угле, а «просто об угле», то есть результат заведомо будет положительным. Загвоздка состоит в том, что может получиться тупой угол (не тот, который нужен). В этом случае придётся делать оговорку, что угол между прямыми – это меньший угол, и из «пи» радиан (180-ти градусов) вычитать получившийся арккосинус.

Желающие могут прорешать задачу третьим способом. Но я рекомендую всё-таки придерживаться первого подхода с ориентированным углом, по той причине, что он широко распространён.

Пример 11

Найти угол между прямыми .

Это пример для самостоятельного решения. Попробуйте решить его двумя способами.

Как-то заглохла по ходу дела сказка…. Потому что нет никакого Кащея Бессмертного. Есть я, причём, не особо запаренный. Если честно, думал, статья значительно длиннее выйдет. Но все равно возьму недавно приобретенную шапочку с очками и пойду купаться в сентябрьской озёрной воде. Отлично снимает усталость и негативную энергетику.

До скорых встреч!

И помните, Бабу-Ягу никто не отменял =)

Решения и ответы:

Пример 3: Решение: Найдём направляющий вектор прямой :

Уравнение искомой прямой составим по точке и направляющему вектору . Так как одна из координат направляющего вектора нулевая, уравнение перепишем в виде:

Ответ:

Пример 5: Решение:
1) Уравнение прямой составим по двум точкам :

2) Уравнение прямой составим по двум точкам :

3) Соответствующие коэффициенты при переменных не пропорциональны: , значит, прямые пересекаются.
4) Найдём точку :

Примечание: здесь первое уравнение системы умножено на 5, затем из 1-го уравнения почленно вычтено 2-ое.
Ответ:

Пример 7: Решение:
1) Найдём нормальный вектор прямой: .
2) Составим уравнение прямой по точке и направляющему вектору :

3) Найдём точку пересечения прямых :

Примечание: второе уравнение умножено на 4, затем уравнения сложены почленно.
Ответ:

Пример 9: Решение: Расстояние между параллельными прямыми найдём как расстояние от точки до прямой. Для этого достаточно найти одну точку, принадлежащую любой из прямых. В целях удобного подбора точки перепишем уравнение в виде уравнения с угловым коэффициентом: . Точка . Вычислим расстояние:

Последним действием числитель и знаменатель умножен на – чтобы избавиться от иррациональности в знаменателе.
Ответ:

Пример 11: Решение:
Способ первый
1) Вы



Поделиться:


Последнее изменение этой страницы: 2016-12-14; просмотров: 595; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.217.168 (0.017 с.)